Publication Cover
Phase Transitions
A Multinational Journal
Volume 92, 2019 - Issue 7
185
Views
3
CrossRef citations to date
0
Altmetric
Articles

A study on preparation and properties of carbon materials/myristic acid composite phase change thermal energy storage materials

, , &
Pages 615-633 | Received 19 Oct 2018, Accepted 10 Apr 2019, Published online: 15 May 2019

References

  • Li W, Song G, Tang G, et al. Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell. Energy. 2011;36:785–791. doi: 10.1016/j.energy.2010.12.041
  • Giro-Paloma J, Konuklu Y, Fernandez AI. Preparation and exhaustive characterization of paraffin or palmitic acid microcapsules as novel phase change material. Sol Energy. 2015;112:300–309. doi: 10.1016/j.solener.2014.12.008
  • Wang X, Dennis M. An experimental study on the formation behavior of single and binary hydrates of TBAB, TBAF and TBPB for cold storage air conditioning applications. Chem Eng Sci. 2015;137:938–946. doi: 10.1016/j.ces.2015.07.042
  • Kenisarin M, Mahkamov K. Passive thermal control in residential buildings using phase change materials. Renew Sustain Energy Rev. 2016;55:371–398. doi: 10.1016/j.rser.2015.10.128
  • Xu B, Li P, Chan C. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments. Appl Energy. 2015;160:286–307. doi: 10.1016/j.apenergy.2015.09.016
  • Fu X, Liu Z, Wu B, et al. Preparation and thermal properties of stearic acid/diatomite composites as form-stable phase change materials for thermal energy storage via direct impregnation method. J Therm Anal Calorim. 2016;123:1173–1181. doi: 10.1007/s10973-015-5030-1
  • Sun Z, Zhang Y, Zheng S, et al. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials. Thermochim Acta. 2013;558:16–21. doi: 10.1016/j.tca.2013.02.005
  • Soda M, Beyene A. Multiphase ultra-low grade thermal energy storage for organic Rankine cycle. Int J Energy Res. 2016;40:51–60. doi: 10.1002/er.3300
  • He M, Yang L, Zhang Z. Supercooling characteristics of inorganic phase change material CaCl2·6H2O. CIESC J. 2017;68:4016–4024. (in Chinese).
  • Li X, Zhou Y, Nian H, et al. Phase change behavior of latent heat storage media based on calcium chloride hexahydrate composites containing strontium chloride hexahydrate and oxidation expandable graphite. Appl Therm Eng. 2016;102:38–44. doi: 10.1016/j.applthermaleng.2016.03.098
  • Nourani M, Hamdami N, Keramat J, et al. Thermal behavior of paraffin-nano-Al2O3 stabilized by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity. Renew Energy. 2016;88:474–482. doi: 10.1016/j.renene.2015.11.043
  • Şahan N, Paksoy H. Determining influences of SiO2 encapsulation on thermal energy storage properties of different phase change materials. Sol Energy Mater Sol Cells. 2017;159:1–7. doi: 10.1016/j.solmat.2016.08.030
  • Zhang X, Wen R, Huang Z, et al. Enhancement of thermal conductivity by the introduction of carbon nanotubes as a filler in paraffin/expanded perlite form-stable phase-change materials. Energy Build. 2017;149:463–470. doi: 10.1016/j.enbuild.2017.05.037
  • Harikrishnan S, Kalaiselvam S. Preparation and thermal characteristics of CuO-oleic acid nanofluids as a phase change material. Thermochim Acta. 2012;533:46–55. doi: 10.1016/j.tca.2012.01.018
  • Zeng J, Zhu F, Yu S, et al. Effects of copper nanowires on the properties of an organic phase change material. Sol Energy Mater Sol Cells. 2012;105:174–178. doi: 10.1016/j.solmat.2012.06.013
  • Sahan N, Paksoy HO. Thermal enhancement of paraffin as a phase change material with nanomagnetite. Sol Energy Mater Sol Cells. 2014;126:56–61. doi: 10.1016/j.solmat.2014.03.018
  • Ji P, Sun H, Zhong Y, et al. Improvement of the thermal conductivity of a phase change material by the functionalized carbon nanotubes. Chem Eng Sci. 2012;81:140–145. doi: 10.1016/j.ces.2012.07.002
  • Sahan N, Fois M, Paksoy H. The effects of various carbon derivative additives on the thermal properties of paraffin as a phase change material. Int J Energy Res. 2016;40:198–206. doi: 10.1002/er.3449
  • Choi DH, Lee J, Hong H, et al. Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application. Int J Refrig. 2014;42:112–120. doi: 10.1016/j.ijrefrig.2014.02.004
  • Solé A, Miró L, Barreneche C, et al. Review of the T-history method to determine thermophysical properties of phase change materials (PCM). Renew Sustain Energy Rev. 2013;26:425–436. doi: 10.1016/j.rser.2013.05.066
  • Yavari F, Fard HR, Pashayi K, et al. Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives. J Phys Chem C. 2011;115:8753–8758. doi: 10.1021/jp200838s
  • Zhang N, Yuan Y, Yuan Y, et al. Effect of carbon nanotubes on the thermal behavior of palmitic-stearic acid eutectic mixtures as phase change materials for energy storage. Sol Energy. 2014;110:64–70. doi: 10.1016/j.solener.2014.09.003
  • Li M. A nano-graphite/paraffin phase change material with high thermal conductivity. Appl Energy. 2013;106:25–30. doi: 10.1016/j.apenergy.2013.01.031
  • Yuan Y, Zhang N, Li T, et al. Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: A comparative study. Energy. 2016;97:488–497. doi: 10.1016/j.energy.2015.12.115
  • Seki Y, Ince S, Ezan MA, et al. Graphite nanoplates loading into eutectic mixture of Adipic acid and Sebacic acid as phase change material. Sol Energy Mater Sol Cells. 2015;140:457–463. doi: 10.1016/j.solmat.2015.05.003
  • Colla L, Fedele L, Mancin S, et al. Nano-PCMs for enhanced energy storage and passive cooling applications. Appl Therm Eng. 2017;110:584–589. doi: 10.1016/j.applthermaleng.2016.03.161
  • Wang J, Xie H, Xin Z, et al. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Sol Energy. 2010;84:339–344. doi: 10.1016/j.solener.2009.12.004
  • Dao TD, Jeong HM. Novel stearic acid/graphene core-shell composite microcapsule as a phase change material exhibiting high shape stability and performance. Sol Energy Mater Sol Cells. 2015;137:227–234. doi: 10.1016/j.solmat.2015.02.009
  • Cai Y, Wei Q, Huang F, et al. Preparation and properties studies of halogen-free flame retardant form-stable phase change materials based on paraffin/high density polyethylene composites. Appl Energy. 2008;85:765–775. doi: 10.1016/j.apenergy.2007.10.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.