Publication Cover
Phase Transitions
A Multinational Journal
Volume 92, 2019 - Issue 7
219
Views
13
CrossRef citations to date
0
Altmetric
Articles

Dielectric, impedance and modulus spectroscopy of Ta-based layered perovskite

, , &
Pages 642-656 | Received 31 Dec 2018, Accepted 03 May 2019, Published online: 20 May 2019

References

  • Aurivillius B. Mixed bismuth oxides with layer lattices. II. Structure of Bi4Ti3O12. Arkiv for Kemi. 1949;54:463–480.
  • Smolenskii GA, Agranovskaya AI, Isupov VA, et al. New ferroelectrics of complex compound. Sov Phys Solid State. 1959;46:907–908.
  • Subarao EC. A family of ferroelectric bismuth compounds. J Phys Chem Solids. 1962;23:665–676. doi: 10.1016/0022-3697(62)90526-7
  • Liu J, Gao C, Zou G, et al. Pressure-induced structural phase transition in Na0.5Bi4.5Ti4O15 by Raman scattering. Phys Lett A. 1962;18:94–98.
  • Scott MC, Scott JF, Paz de Araujo CA, et al. Ferroelectric memories. Science. 1989;246:1400–1405. doi: 10.1126/science.246.4936.1400
  • Scott JF. Ferroelectric Memories. Phys World. 1995;8:46–52. doi: 10.1088/2058-7058/8/2/34
  • Auciello O, Scott JF, Ramesh R, et al. The physics of ferroelectric memories. Phys Today. 2008;7:22.
  • Scott JF, Alexe M, Zakharov ND, et al. NANO-phase SBT-family ferroelectric memories. Int Ferroelectrics. 1998;21:1–14. doi: 10.1080/10584589808202046
  • Cross LE. Relaxor ferroelectrics: an overview. Ferroelectrics. 1994;151:305–320. doi: 10.1080/00150199408244755
  • Kholkin AL, Avdeev M, Costa MEV, et al. Dielectric relaxation in Ba-based layered perovskites. Appl Phy Lett. 2001;79:662–664. doi: 10.1063/1.1386616
  • Chen SY, Lee VC. Effect of lead additive on the ferroelectric properties and microstructure of SrxPby Bi2zTa2O9 thin films. J Appl Phys. 2000;87:8024–8030. doi: 10.1063/1.373491
  • Lu CH, Wen CY. New non-fatigue ferroelectric thin film of barium bismuth tantalite. Mater Lett. 1999;38:278–282. doi: 10.1016/S0167-577X(98)00173-6
  • Merzhanov AG, Mkrtchyan SO, Nersesyan MD, et al. Dokl. Akad. Nauk Republic of Romania. 1992;93:81.
  • Suchanicz J. The low-frequency dielectric relaxation Na0.5Bi0.5TiO3ceramics. J Mater Sci Eng B. 1998;55:114–118. doi: 10.1016/S0921-5107(98)00188-3
  • Płcharski J, Weiczorek W. PEO based composite solid electrolyte containing nasicon. Solid State Ionics. 1988;28–30:979–982. doi: 10.1016/0167-2738(88)90315-3
  • Maiti T, Guo R, Bhalla AS, et al. Structure-property phase diagram of BaZrxTi1−xO3 system. J Am Ceram Soc. 2008;91:1769–1780. doi: 10.1111/j.1551-2916.2008.02442.x
  • Suman CK, Prasad K, Choudhary RNP, et al. Complex impedance studies on tungsten-bronze electroceramic: Pb2Bi3LaTi5O18. J Mater Sci. 2006;41:369–375. doi: 10.1007/s10853-005-2620-5
  • Srivastava SL. Characteristic time of ionic conductance and electrode polarization capacitance in some organic liquids by low frequency dielectric spectroscopy. Indian J Pure Appl Phys. 1991;29:745–751.
  • Hench LL, West JK. Principles of electronic ceramics. New York: Wiley; 1990, p. 189.
  • Anderson JC. Dielectrics. London: Chapman and Hall; 1964.
  • Jonscher AK. The ‘universal’ dielectric response. Nature. 1977;267:673–679. doi: 10.1038/267673a0
  • Mott NF. Conduction in non-crystalline materials. Philos Mag. 1969;19:835–852. doi: 10.1080/14786436908216338
  • Mott NF, Davis EA. Electronic process in non-crystalline materials. Oxford: Clarendon Press; 1971, p. 437.
  • Behera C, Das PR, Choudhary RNP, et al. Structural and electrical properties of mechanothermally synthesized NiFe2O4. J Electron Mater. 2014;43:3539–3549. doi: 10.1007/s11664-014-3216-0
  • Patri SK, Deepti PL, Choudhary RNP, et al. Dielectric, impedance and modulus spectroscopy of BaBi2Nb2O9. J Electroceramics. 2018;40:338–346. doi: 10.1007/s10832-018-0135-0
  • Lanfredi S, Rodrigues ACM. Impedance spectroscopy study of the electrical conductivity and dielectric constant of polycrystalline LiNbO3. J Appl Phys. 1999;86:2215–2219. doi: 10.1063/1.371033
  • Sinclair DC, West AR. Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J Appl Phys. 1989;66:3850–3856. doi: 10.1063/1.344049
  • Irvine TS, Sinclair DC, West AR. Electroceramics: characterization by impedance spectroscopy. Adv Mater. 1990;2:132–138. doi: 10.1002/adma.19900020304
  • Hodge IM, Ingram MD, West AR. Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J Electroanal Chem. 1976;74:125–143. doi: 10.1016/S0022-0728(76)80229-X
  • Rouahi A, Kahouli A, Challali F, et al. Impedance and electric modulus study of amorphous TiTaO thin films: highlight of the interphase effect. J Phys D Appl Phys. 2013;46:065308. doi: 10.1088/0022-3727/46/6/065308
  • Hánderek J, Ujma Z, Carabatos-Nedelec C, et al. Dielectric, pyroelectric, and thermally stimulated depolarization current investigations on lead lanthanum zirconate-titanate – x/95/5 ceramics with La content x = 0.5%–4%. J Appl Phys. 1993;73:367–373. doi: 10.1063/1.353857
  • Ujma Z, Adamczyk M, Hánderek J, et al. Relaxor properties of (Pb0.75Ba0.25)(Zr0.70Ti0.30)O3. ceramics. J Europ Ceram Soc. 1998;18:2201–2207. doi: 10.1016/S0955-2219(98)00153-8
  • Raju MRR, Choudhary RNP. Effect of Zr+4ion substitution on the structural, dielectric and electrical properties of Sr5LaTi3Nb7O30 ceramics. J Mater Sci. 2004;39:1765–1771. doi: 10.1023/B:JMSC.0000016182.42768.cf
  • Rawat M, Yadav KL, Kumar A, et al. Structural, dielectric and conductivity properties of Ba 2+ doped (Bi0. 5Na0. 5) TiO3 ceramic. Adv Mat Lett. 2012;3:286–292. doi: 10.5185/amlett.2012.2322
  • Nobre MAL, Lanfredi S. Ferroelectric state analysis in grain boundary of Na0.85Li0.15NbO3 ceramic. J Appl Phys. 2003;93:5557–5562. doi: 10.1063/1.1564281
  • Behera AK, Mohanty NK, Behera B, et al. Structural and electrical properties of KCa2Nb5O15 ceramics. Adv Mat Lett. 2013;4:141–145. doi: 10.5185/amlett.2012.6359
  • Deepti PL, Patri SK, Choudhary RNP, et al. MgBi2V2O9: preparation and electrical property evaluation. J Mater Sci: Mater Electron. 2017;28:16071–16076.
  • Li YM, Chen W, Zhou J, et al. Impedance spectroscopy and dielectric properties of Na 0.5Bi0.5TiO3-NaNbO3 ceramics. Phys B. 2005;365:76–81. doi: 10.1016/j.physb.2005.04.039
  • Ahmed MA, Mansour SF, Abdo MA, et al. Electrical properties of Cu substituted Co nano ferrite. Phys Scr. 2012;86:025705. doi: 10.1088/0031-8949/86/02/025705
  • Pradhan DK, Choudhary RNP, Rinaldi C, et al. Effect of Mn substitution on electrical and magnetic properties of Bi0.9La0.1FeO3. J Appl Phys. 2009;106:024102. doi: 10.1063/1.3158121
  • Macedo PB, Moynihan CT, Bose R, et al. The role of ionic diffusion in polarization in vitreous ionic conductors. Phys Chem Glasses. 1972;13:171–179.
  • Raymond O, Font R, Suárez-Almodovar N, et al. Frequency-temperature response of ferroelectromagnetic Pb(Fe1/2Nb1/2)O3 ceramics obtained by different precursors. Part II. Impedance spectroscopy characterization. J Appl Phys. 2005;97:1–30. doi: 10.1007/10828028_1
  • Kumar N, Patri SK, Choudhary RNP, et al. Frequency-temperature response of a new multiferroic. Process Appl Ceram. 2014;8:121–125. doi: 10.2298/PAC1403121K
  • Saha S, Sinha TP. Low-temperature scaling behavior of BaFe0.5Nb0.5O3. Phys Rev B. 2002;65:134103. doi: 10.1103/PhysRevB.65.134103
  • Wu J, Wang J. Ferroelectric and impedance behavior of La- and Ti-Codoped BiFeO3 thin films. J Am Ceram Soc. 2010;93:2795–2803. doi: 10.1111/j.1551-2916.2010.03816.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.