Publication Cover
Phase Transitions
A Multinational Journal
Volume 93, 2020 - Issue 2
127
Views
2
CrossRef citations to date
0
Altmetric
Articles

Synthesis and characterization of Bi3+ and V5+ co-substituted La2Mo2O9

, &
Pages 197-206 | Received 01 Aug 2019, Accepted 14 Dec 2019, Published online: 03 Jan 2020

References

  • Saikia AJ, Tripathy D, Tado GT, et al. Effect of V5+ substitution on structural and electrical properties of La2Mo2O9. Phys B. 2019;570:133–138. doi: 10.1016/j.physb.2019.06.021
  • Lacorre P, Goutenoire F, Bohnke O, et al. Designing fast oxide-ion conductors based on La2Mo2O9. Nat. 2000;404:856–858. doi: 10.1038/35009069
  • Wang XP, Cheng ZJ, Fang QF. Influence of potassium doping on the oxygen-ion diffusion and ionic conduction in the La2Mo2O9 oxide-ion conductors. Solid State Ion. 2005;176:761–765. doi: 10.1016/j.ssi.2004.10.015
  • Teladi C, Chiodelli G, Malavasi L, et al. Effect of alkaline-doping on the properties of La2Mo2O9 fast oxygen ion conductor. J Matter Chem. 2004;14:3553–3557. doi: 10.1039/b410437d
  • Subasri R, Matusch D, Nate H, et al. Synthesis and characterization of (La1-xMx)2Mo2O9-δ; M=Ca2+, Sr2+ or Ba2+. J Eur Ceram Soc. 2004;24:129–137. doi: 10.1016/S0955-2219(03)00123-7
  • Lopez DM, Coll DP, Morales JCR, et al. Synthesis and transport properties in La2−xAxMo2O9−δ (A=Ca2+, Sr2+, Ba2+, K+) series. Electrochim Acta. 2007;52:5219–5231. doi: 10.1016/j.electacta.2007.02.033
  • He T, Huang Y, He Q, et al. The effects on the structures and properties in the oxide-ion conductor La2Mo2O9 by partial substituting Ba for La. J Alloys Compd. 2005;388:145–152. doi: 10.1016/j.jallcom.2004.07.010
  • Tsai DS, Hsieh MJ, Tseng JC, et al. Ionic conductivities and phase transitions of lanthanide rare-earth substituted La2Mo2O9. J Eur Ceram Soc. 2005;25:481–487. doi: 10.1016/j.jeurceramsoc.2004.03.020
  • Saradha T, Subramania A, Balakrishnan K, et al. Microwave-assisted combustion synthesis of nanocrystalline Sm-doped La2Mo2O9 oxide-ion conductors for SOFC application. Mater Res Bull. 2015;68:320–325. doi: 10.1016/j.materresbull.2015.03.071
  • Yang J, Gu Z, Wen Z, et al. Preparation and characterization of solid electrolytes La2-xAxMo2-yWyO9 (A=Sm, Bi). Solid State Ion. 2005;176:523–530. doi: 10.1016/j.ssi.2004.04.014
  • Voronkova V, Kharitonova E, Krasilnikova A. Phase transitions and electrical conductivity of Bi-doped La2Mo2O9 oxide ion conductors. Phys Status Solidi A. 2009;206(11):2564–2568. doi: 10.1002/pssa.200925184
  • Goutenoire F, Isnard O, Suard E, et al. Structural and transport characteristics of the LAMOX family of fast oxide-ion conductors, based on lanthanum molybdenum oxide La2Mo2O9. J Mater Chem. 2001;11:119–124. doi: 10.1039/b002962i
  • Collado A, Aranda MAG, Cabeza A, et al. Synthesis, and thermal expansion of the La2W2-xMoxO9 series. J Solid State Chem. 2002;167:80–85. doi: 10.1006/jssc.2002.9622
  • Lopez DM, Vazquez JC, Morales JCR, et al. Electrical conductivity and redox stability of La2Mo2−xWxO9 materials. Electrochim Acta. 2005;50:4385–4395. doi: 10.1016/j.electacta.2005.02.002
  • Li D, Wang XP, Fang QF, et al. Phase transition associated with the variation of oxygen vacancy/ion distribution in the oxide-ion conductor La2Mo2–xWxO9. Phys Status Solidi A. 2007;204(7):2270–2278. doi: 10.1002/pssa.200622498
  • Corbel G, Laigant Y, Goutenoire F, et al. Effects of partial substitution of Mo6+ by Cr6+ and W6+ on the crystal structure of the fast oxide-ion conductor structural effects of W6+. Chem Mater. 2005;17:4678–4684. doi: 10.1021/cm0501214
  • Li C, Wang XP, Wang JX, et al. Study on the electrical conductivity and oxygen diffusion of oxide-ion conductors La2Mo2-xTxO9-δ (T = Al, Fe, Mn, Nb, V). Mater Res Bull. 2007;42:1077–1084. doi: 10.1016/j.materresbull.2006.09.014
  • Voronkova VI, Kharitonova EP, Krasil’nikova AE. Specific features of phase transitions and the conduction of La2Mo2O9 oxide ion conducting compound doped with vanadium. Crystallogr Rep. 2010;55:276–282. doi: 10.1134/S1063774510020203
  • Jin TY, Rao MVM, Cheng CL, et al. Structural stability and ion conductivity of the Dy and W substituted La2Mo2O9. Solid State Ion. 2007;178:367–374. doi: 10.1016/j.ssi.2007.01.031
  • Borah L, Paik B, Hashmi SA, et al. Conductivity and electrical modulus studies of La2−xNdxMo1.7W0.3O9−δ oxygen ion conductor. Ion. 2012;18:747–757. doi: 10.1007/s11581-012-0676-1
  • Borah L, Paik B, Pandey A. Effect of Ho substitution on the ionic conductivity of La2Mo1.7W0.3O9 oxygen ion conductor. Solid State Sci. 2012;14:387–393. doi: 10.1016/j.solidstatesciences.2012.01.003
  • Paul T, Ghosh A. Conduction and relaxation mechanisms in bismuth doped La2Mo2O9 ionic conductors. J Appl Phys. 2013;114:164101-1–164101-7.
  • Rodriguez-Carvajal J. Program Fullprof 2 k, version 2.00, Nov. 2001.
  • Bondarenko AS, Ragoisha GA. Progress in Chemometrics Research. Pomerantsev AL, editor. New York: Nova Science Publishers; 2005, 89–102. http://www.abc.chemistry.bsu.by/vi/analyser/.
  • Goutenoire F, Isnard O, Retoux R, et al. Crystal structure of La2Mo2O9, a new fast oxide-ion conductor. Chem Mater. 2000;12:2575–2580. doi: 10.1021/cm991199l
  • Yadav K, Singh HK, Varma GD. Effect of La-doping on magnetic properties of Bi0.6−xLaxCa0.4MnO3 (0.0≤x≤0.6) perovskite manganites. Phys Scr. 2012;85:045704(6pp).
  • Zhao Y, Li Y, Ren X, et al. The effect of Eu doping on microstructure, morphology and methanal-sensing performance of highly ordered SnO2 nanorods array. Nanomate. 2017;7(12):410. doi:10.3390/nano7120410.
  • Tripathy D, Pandey A. Structural and impedance studies of TiIV and NbV co-doped bismuth vanadate system. J Alloys Compd. 2018;737:136–143. doi: 10.1016/j.jallcom.2017.12.079
  • Tian C, Shao L, Ji D, et al. Synthesis and characterization of tungsten and barium co-doped La2Mo2O9 by sol-gel process for solid oxide fuel cells. J Rare Earths. 2019;37(9):984–988. doi:10.1016/j.jre.2018.12.013.
  • Tripathy D, Saikia A, Pandey A. Effect of simultaneous Ti and Nb doping on structure and ionic conductivity of Bi2V1−xTix/2Nbx/2O5.5−δ (0.1≤x≤0.25) ceramics. Ionics. 2019;25:2221–2230. doi:10.1007/s11581-018-2622-3.
  • Alaghbari ES, Alariqi SAS, Al–Areqi NAS, et al. Investigation on phase stability and electrical properties Bi2V1–xBixO5.5–x/2 (BIBIVOX) solid electrolyte for intermediate temperature – solid oxide fuel cells (IT–SOFCs). Am J Chem Eng. 2017;5(6):169–176. doi: 10.11648/j.ajche.20170506.19
  • Beg S, Al-Areqi NAS, Hafeez S, et al. Improved structural and electrical properties of nickel and aluminum co-doped Bi4V2O11 solid electrolyte. Ion. 2015;21:421–428. doi: 10.1007/s11581-014-1197-x
  • Lacorre P, Selmi A, Corbel G, et al. On the flexibility of the structural framework of cubic LAMOX compounds, in relationship with their anionic conduction properties. Inorg Chem. 2006;45:627–635. doi: 10.1021/ic0513080
  • Georges S, Bohnké O, Goutenoire F, et al. Effects of tungsten substitution on the transport properties and mechanism of fast oxide-ion conduction in La2Mo2O9. Solid State Ion. 2006;177:1715–1720. doi: 10.1016/j.ssi.2006.02.036
  • Corbel G, Chevereau E, Kodjikian S, et al. Topological metastability and oxide ionic conduction in La2-xEuxMo2O9. Inorg Chem. 2007;46:6395–6404. doi: 10.1021/ic700876d
  • Wang XP, Fang QF, Li ZS, et al. Dielectric relaxation studies of Bi-doping effects on the oxygen-ion diffusion in La2−xBixMo2O9 oxide-ion conductors. Appl Phys Lett. 2002;81:3434–3436. doi: 10.1063/1.1518151

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.