Publication Cover
Phase Transitions
A Multinational Journal
Volume 93, 2020 - Issue 2
314
Views
23
CrossRef citations to date
0
Altmetric
Articles

Effect of Gadolinium on the structural and dielectric properties of BCZT ceramics

, , , &
Pages 245-262 | Received 18 Oct 2019, Accepted 30 Dec 2019, Published online: 09 Jan 2020

References

  • Haertling GH. Ferroelectric ceramics: history and technology. J Am Ceram Soc. 1999;82:797–818.
  • Setter N, Waser R. Electroceramic materials. Acta Mater. 2000;48:151–178.
  • Viehland D, Ewart L, Powers J, et al. Stress dependence of the electromechanical properties of <001>-oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals: Performance advantages and limitations. J Appl Phys. 2001;90:2479–2483.
  • Zhang J, Yin Z, Zhang MS, et al. Size-driven phase transition in stress-induced ferroelectric thin films. Solid State Commun. 2001;118:241–246.
  • Tang XG, Chan HLW. Effect of grain size on the electrical properties of (Ba,Ca)(Zr,Ti)O3 relaxor ferroelectric ceramics. J Appl Phys. 2005;97:034109.
  • Shrout TR, Zhang SJ. Lead-free piezoelectric ceramics: alternatives for PZT. J Electroceram. 2007;19:113–126.
  • Zhang S, Xia R, Shrout TR, et al. Characterization of lead free (K0.5Na0.5)NbO3–LiSbO3 piezoceramic. Solid State Commun. 2007;141:675–679.
  • Ge W, Liu H, Zhao X, et al. Crystal growth and high piezoelectric performance of 0.95Na0.5Bi0.5TiO3–0.05BaTiO3 lead-free ferroelectric materials. J Phys D: Appl Phys. 2008;41:115403.
  • Patel S, Chauhan A, Kundu S, et al. Tuning of dielectric, pyroelectric and ferroelectric properties of 0.715Bi0.5Na0.5TiO3-0.065BaTiO3-0.22SrTiO3 ceramic by internal clamping. AIP Adv. 2015;5:087145.
  • Yan X, Zheng M, Hou Y, et al. Composition-driven phase boundary and its energy harvesting performance of BCZT lead–free piezoelectric ceramic. J Eur Ceram Soc. 2017;37:2583–2589.
  • White D, Zhao X, Bresser MF, et al. Structure and properties of (1−x)Pb(Mg1/2W1/2)O3 − xPb(Zr0.5Ti0.5)O3 solid solution ceramics. J Mater Sci. 2008;43:5258–5264.
  • Vijatovic MM, Bobic JD, Stojanovic BD. History and challenges of barium titanate: part I. Sci Sintering. 2008;40:155–165.
  • Yu Z, Ang C, Guo R, et al. Ferroelectric-relaxor behavior of Ba(Ti0.7Zr0.3)O3Ba(Ti0.7Zr0.3)O3 ceramics. J Appl Phys. 2002;92:2655–2657.
  • Tang XG, Chew KH, Chan HLW. Diffuse phase transition and dielectric tunability of Ba(ZryTi1−y)O3 relaxor ferroelectric ceramics. Acta Mater. 2004;52:5177–5183.
  • Wang Y, Li L, Qi J, et al. Ferroelectric characteristics of ytterbium-doped barium zirconium titanate ceramics. Ceram Int. 2002;28:657–661.
  • Li W, Xu Z, Chu R, et al. Effect of Ho doping on piezoelectric properties of BCZT ceramics. Ceram Int. 2012;38:4353–4355.
  • Shan D, Qu YF, Song JJ. Dielectric properties and substitution preference of yttrium doped barium zirconium titanate ceramics. Solid State Commun. 2007;141:65–68.
  • Bhaskar-Reddy S, Ramachandra-Rao MS, Prasad-Rao K. Observation of high permittivity in Ho substituted BaZr0.1Ti0.9O3 ceramics. Appl Phys Lett. 2007;91:022917–022919.
  • Chou X, Zhai J, Jiang H, et al. Dielectric properties and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics. J Appl Phys. 2007;102:084106–084111.
  • Kishi H, Kohzu N, Sugino J, et al. The effect of rare-earth (La, Sm, Dy, Ho and Er) and Mg on the microstructure in BaTiO3. J Eur Ceram Soc. 1999;19:1043–1046.
  • Shirasaki S, Tshukioka M, Yamamura H, et al. Origin of semiconducting behavior in rare-earth-doped barium titanate. Solid State Commun. 1976;19:721–724.
  • Dergunova NV, Fesenko EG, Sakhnenko VP. Rendering barium titanate semiconductive by doping with rare earth elements. Ferroelectrics. 1988;83:187–191.
  • Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics. Nature. 2004;432:84–87.
  • Takenaka T, Nagata H, Hiruma Y. Current developments and prospective of lead-free piezoelectric ceramics. Jpn J Appl Phys. 2008;47:3787–3801.
  • Sun ZX, Pu YP, Dong ZJ, et al. Dielectric and piezoelectric properties and PTC behavior of Ba0.9Ca0.1Ti0.9Zr0.1O3−xLa ceramics prepared by hydrothermal method. Mat Lett. 2014;118:1–4.
  • Garbarz-Glos B, Bak W, Antonova M, et al. Structural, microstructural and impedance spectroscopy study of functional ferroelectric ceramic materials based on barium titanate. Mat Sci Eng. 2013;49:012031.
  • Sen S, Choudhary RNP, Tarafdar A, et al. Impedance spectroscopy study of strontium modified lead zirconate titanate ceramics. J Appl Phys. 2006;99:124114–124118.
  • Hannachi N, Chaabane I, Guidara K, et al. AC electrical properties and dielectric relaxation of [N(C3H7)4]2Cd2Cl6, single crystal. Mat Sci Eng B. 2010;172:24–32.
  • Bahuguna Saradhi BV, Srinivas K, Prasad G, et al. Impedance spectroscopic studies in ferroelectric (Na1/2Bi1/2)TiO3. Mat Sci Eng B. 2003;98:10–16.
  • Wang Z, Li W, Chu R, et al. Strong photoluminescence and high piezoelectric properties of Eu-doped (Ba0.99Ca0.01)(Ti0.98Zr0.02)O3 ceramics. J Mater Sci: Mater Electron. 2017;17:16561–16569.
  • Wu E. POWD- An interactive powder diffraction interpretation and indexing program version 2.1. School of Physical Sciences. Flinders University of South Australia. Bedford Park. S. A. 5042. Australia.
  • Coondoo I, Satapathy S, Kumar N, et al. Dielectric, piezoelectric enhancement and photoluminescent behavior in low temperature sintered Pr-modified Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics. J Electron Mater. 2018;47:5870–5878.
  • Mondal T, Das S, Badapanda T, et al. Effect of Ca2+ substitution on impedance and electrical conduction mechanism of Ba1−xCaxZr0.1Ti0.9O3 (0.00≤x≤0.20) ceramics. Phys B: Condens Matter. 2017;508:124–135.
  • Rodriguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B. 1993;192:55–69.
  • Haugen AB, Forrester JS, Damjanovic D, et al. Structure and phase transitions in 0.5 (Ba0. 7Ca0. 3TiO3)-0.5 (BaZr0. 2Ti0. 8O3) from− 100 C to 150 C. J Appl Phys. 2013;113:014103.
  • Li W, Xu Z, Chu R, et al. Structural and dielectric properties in the (Ba1−xCax)(Ti0.95Zr0.05)O3 ceramics. Curr Appl Phys. 2012;12:748–751.
  • Panigrahi SC, Das PR, Padhee R, et al. Effect of Gd on dielectric and piezoelectric properties of lead zirconate titanate ferroelectric ceramics. Ferroelectrics. 2018;524:14–29.
  • Bhargavi GN, Khare A, Badapanda T, et al. Analysis of temperature and frequency dependent dielectric properties, dynamic hysteresis loop and thermal energy conversion in BaZr0.05Ti0.95O3 ceramic. J Mat Sci: Mat Electron. 2018;29(13):11439–11448.
  • Macdonald JR. Impedance spectroscopy. Emphasizing solid materials and systems. New York: Wiley; 1987.
  • Parida BN, Das PR, Padhee R, et al. A new ferroelectric oxide Li2Pb2Pr2W2Ti4Nb4O30: Synthesis and characterization. J Phys Chem Solids. 2012;73:713–719.
  • Brahma S, Choudhary RNP, Thakur AK. Ac impedance analysis of LaLiMo2O8 electroceramics. Physica B. 2005;355:188–201.
  • Rhimi T, Leroy G, Duponchel B, et al. AC and DC conductivity study of LiH2PO4 compound using impedance spectroscopy. Ionics. 2018;24:1305–1312.
  • Pradhan DK, Choudhary RNP, Rinaldi C, et al. Effect of Mn substitution on electrical and magnetic properties of Bi0.9La0.1FeO3. J Appl Phys. 2009;106:024102.
  • Behera B, Nayak P, Choudhary RNP. Structural and impedance properties of KBa2V5O15 ceramics. Mat Res Bull. 2008;43:401–410.
  • Mondal T, Majee BP, Das S, et al. A comparative study on electrical conduction properties of Sr-substituted Ba1 − xSrxZr0.1Ti0.9O3 (x = 0.00–0.15) ceramics. Ionics. 2017;23:2405–2416.
  • Sutar BC, Choudhary RNP, Das PR. Dielectric and impedance spectroscopy of Sr(Bi0.5Nb0.5)O3 ceramics. Ceram Int. 2014;40:7791–7798.
  • Jonscher AK. Dielectric relaxation in solids. London: Chelsea Dielectrics Press; 1983.
  • Chandra KP, Prasad K, Gupta RN. Impedance spectroscopy study of an organic semiconductor: Alizarin. Physica B. 2007;388:118–123.
  • Sinclair DC, West AR. Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J Appl Phys. 1989;66:3850.
  • Nobre MAL, Lanfredi S. Ferroelectric state analysis in grain boundary of Na0.85Li0.15NbO3 ceramic. J Appl Phys. 2003;93:5557.
  • Bouziane M, Taibi M, Boukhari A. Synthesis and ferroelectric properties of rare earth compounds with tungsten bronze-type structure. Mater Chem Phys. 2011;129:673–677.
  • Tiwari B, Choudhary RNP. Frequency–temperature response of Pb(Zr0.65−xCexTi0.35)O3 ferroelectric ceramics: impedance spectroscopic studies. J Alloys Compd. 2010;493:1–10.
  • Rhimi T, Toumi M, Khirouni K, et al. AC conductivity, electric modulus analysis of KLi(H2PO4)2 compound. J Alloys Compd. 2017;714:546–552.
  • Kaushal A, Olhero SM, Singh B, et al. Impedance analysis of 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics consolidated from micro-granules. Ceram Int. 2014;40:10593–10600.
  • Macdonald JR. Note on the parameterization of the constant-phase admittance element. Solid State Ion. 1984;13:147–149.
  • Li W, Schwartz RW. Ac conductivity relaxation processes in CaCu3Ti4O12 ceramics: grain boundary and domain boundary effects. Appl Phys Lett. 2006;89:242906.
  • Liang P, Li F, Chao X, et al. Effects of Cu stoichiometry on the microstructure, electrical conduction, and dielectric responses of Y2/3Cu3Ti4O12. Ceram Int. 2015;41:11314–11322.
  • Pattanayak S, Choudhary RNP, Das PR, et al. Effect of Dy-substitution on structural, electrical and magnetic properties of multiferroic BiFeO3 ceramics. Ceram Int. 2014;40:7983–7991.
  • Dutta P, Biswas S, Ghosh M, et al. The dc and ac conductivity of polyaniline–polyvinyl alcohol blends. Synth Met. 2001;122:455–461.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.