Publication Cover
Phase Transitions
A Multinational Journal
Volume 93, 2020 - Issue 7
171
Views
1
CrossRef citations to date
0
Altmetric
Articles

Phase boundary and electric field induced polarization rotation in lead-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3

&
Pages 666-677 | Received 20 Nov 2019, Accepted 12 May 2020, Published online: 27 May 2020

References

  • Liu WF, Ren XB. Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett. 2009;103:257602. doi: 10.1103/PhysRevLett.103.257602
  • Acosta M, Novak N, Rojas V, et al. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl Phys Rev. 2017;4:041305. doi: 10.1063/1.4990046
  • Gao JH, Ke XQ, Acosta M, et al. High piezoelectricity by multiphase coexisting point: Barium titanate derivatives. MRS Bull. 2018;43:595–599. doi: 10.1557/mrs.2018.155
  • Keeble DS, Benabdallah F, Thomas PA, et al. Revised structural phase diagram of Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3. Appl Phys Lett. 2013;102:092903. doi: 10.1063/1.4793400
  • Zhang L, Zhang M, Wang L, et al. Phase transitions and the piezoelectricity around morphotropic phase boundary in Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 lead-free solid solution. Appl Phys Lett. 2014;105:162908. doi: 10.1063/1.4899125
  • Cordero F, Craciun F, Dinescu M, et al. Elastic response of (1-x)Ba(Ti0.8Zr0.2)O3-x(Ba0.7Ca0.3)TiO3 (x = 0.45-0.55) and the role of the intermediate orthorhombic phase in enhancing the piezoelectric coupling. Appl Phys Lett. 2014;105:232904. doi: 10.1063/1.4903807
  • Zhukov S, Acosta M, Genenko YA, et al. Polarization dynamics variation across the temperature- and composition-driven phase transitions in the lead-free Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ferroelectrics. J Appl Phys. 2015;118:134104. doi: 10.1063/1.4932641
  • Acosta M, Khakpash N, Someya T, et al. Origin of the large piezoelectric activity in (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics. Phys Rev B. 2015;91:104108. doi: 10.1103/PhysRevB.91.104108
  • Gao JH, Hu XH, Zhang L, et al. Major contributor to the large piezoelectric response in (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics: domain wall motion. Appl Phys Lett. 2014;104:252909. doi: 10.1063/1.4885675
  • Lu SB, Xu ZK, Su S, et al. Temperature driven nano-domain evolution in lead-free Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 piezoceramics. Appl Phys Lett. 2014;105:032903. doi: 10.1063/1.4891756
  • Guo HZ, Zhou C, Ren XB, et al. Unique single-domain state in a polycrystalline ferroelectric ceramic. Phys Rev B. 2014;89:100104(R). doi: 10.1103/PhysRevB.89.100104
  • Guo HZ, Voas BK, Zhang S, et al. Polarization alignment, phase transition, and piezoelectricity development in polycrystalline 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3. Phys Rev B. 2014;90:014103. doi: 10.1103/PhysRevB.90.014103
  • Ehmke MC, Khansur NH, Daniels JE, et al. Resolving structural contributions to the electric-field-induced strain in lead-free (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 piezoceramics. Acta Mater. 2014;66:340–348. doi: 10.1016/j.actamat.2013.11.021
  • Acosta M, Novak N, Rossetti Jr GA, et al. Mechanisms of electromechanical response in (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics. Appl Phys Lett. 2015;107:142906. doi: 10.1063/1.4932654
  • Gao JH, Dai Y, Hu XH, et al. Phase transition behaviors near the triple point for Pb-free (1−x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 piezoceramics. EPL. 2016;115:37001. doi: 10.1209/0295-5075/115/37001
  • Gao JH, Hu XH, Wang Y, et al. Understanding the mechanism of large dielectric response in Pb-free (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. Acta Mater. 2017;125:177–186. doi: 10.1016/j.actamat.2016.11.064
  • Brajesh K, Tanwar K, Abebe M, et al. Relaxor ferroelectricity and electric-field-driven structural transformation in the giant lead-free piezoelectric (Ba,Ca)(Ti, Zr)O3. Phys Rev B. 2015;92:224112. doi: 10.1103/PhysRevB.92.224112
  • Brajesh K, Abebe M, Ranjan R. Structural transformations in morphotropic-phase-boundary composition of the lead-free piezoelectric system Ba(Ti0.8Zr0.2)O3-x(Ba0.7Ca0.3)TiO3. Phys Rev B. 2016;94:104108. doi: 10.1103/PhysRevB.94.104108
  • Zhang L, Ren XB, Carpenter MA. Influence of local strain heterogeneity on high piezoelectricity in 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics. Phys Rev B. 2017;95:054116. doi: 10.1103/PhysRevB.95.054116
  • Nahas Y, Akbarzadeh A, Prokhorenko S, et al. Microscopic origins of the large piezoelectricity of lead free (Ba,Ca)(Zr,Ti)O3. Nat Commun. 2017;8:15944. doi: 10.1038/ncomms15944
  • Heitmann AA, Rossetti Jr GA. Thermodynamics of ferroelectric solid solutions with morphotropic phase boundaries. J Am Ceram Soc. 2014;97(6):1661–1685. doi: 10.1111/jace.12979
  • Yang T, Ke XQ, Wang YZ. Mechanisms responsible for the large piezoelectricity at the tetragonal-orthorhombic phase boundary of (1-x)BaZr0.2Ti0.8O3-xBa0.7Ca0.3TiO3 system. Sci Rep. 2016;6:33392. doi: 10.1038/srep33392
  • Zhou C, Ke XQ, Yao YG, et al. Evolution from successive phase transitions to ‘morphotropic phase boundary’ in BaTiO3-based ferroelectrics. Appl Phys Lett. 2018;112:182903. doi: 10.1063/1.5028302
  • Du B, Ma W. Phenomenological modeling of phase transitions and electrocaloric effect in Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3. J Am Ceram Soc. 2019;102:2604–2610.
  • Bai Y, Han X, Qiao LJ. Optimized electrocaloric refrigeration capacity in lead-free BaZr0.2Ti0.8O3-xBa0.7Ca0.3TiO3 ceramics. Appl Phys Lett. 2013;102:252904. doi: 10.1063/1.4810916
  • Sanlialp M, Shvartsman VV, Acosta M, et al. Strong electrocaloric effect in lead-free 0.65Ba(Zr0.2Ti0.8)O3-0.35(Ba0.7Ca0.3)TiO3 ceramics obtained by direct measurements. Appl Phys Lett. 2015;106:062901. doi: 10.1063/1.4907774
  • Singh G, Bhaumik I, Ganesamoorthy S, et al. Electro-caloric effect in 0.45BaZr0.2Ti0.8O3- 0.55Ba0.7Ca0.3TiO3 single crystal. Appl Phys Lett. 2013;102:082902. doi: 10.1063/1.4793213
  • Fu H, Cohen RE. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature. 2000;403:281–283. doi: 10.1038/35002022
  • Guo R, Cross LE, Park SE, et al. Origin of the high piezoelectric response in PbZr1-xTixO3. Phys Rev Lett. 2000;84:5423. doi: 10.1103/PhysRevLett.84.5423
  • Noheda B, Cox DE, Shirane G, et al. Polarization rotation via a monoclinic phase in the piezoelectric 92%PbZn1/3Nb2/3O3-8%PbTiO3. Phys Rev Lett. 2001;86:3891–3894. doi: 10.1103/PhysRevLett.86.3891
  • Bellaiche L, Garcia A, Vanderbilt D. Electric-field induced polarization paths in (PbZr1-xTixO3) alloys. Phys Rev B. 2001;64:060103(R). doi: 10.1103/PhysRevB.64.060103
  • Noheda B, Cox DE. Bridging phases at the morphotropic boundaries of lead oxide solid solutions. Phase Transitions. 2006;79:5–20. doi: 10.1080/01411590500467262
  • Damjanovic D. A morphotropic phase boundary system based on polarization rotation and polarization extension. Appl Phys Lett. 2010;97:062906. doi: 10.1063/1.3479479
  • Li F, Zhang S, Yang T, et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat Commun. 2016;7:13807. doi: 10.1038/ncomms13807
  • Liu H, Chen J, Fan LL, et al. Critical role of monoclinic polarization rotation in high-performance perovskite piezoelectric materials. Phys Rev Lett. 2017;119:017601. doi: 10.1103/PhysRevLett.119.017601
  • Bell AJ. Phenomenologically derived electric field-temperature phase diagrams and piezoelectric coefficients for single crystal barium titanate under fields along different axes. J Appl Phys. 2001;89:3907. doi: 10.1063/1.1352682
  • Li YL, Cross LE, Chen LQ. A phenomenological thermodynamic potential for BaTiO3 single crystals. J Appl Phys. 2005;98:064101. doi: 10.1063/1.2042528
  • Ma W, Hao A. Electric field-induced polarization rotation and ultrahigh piezoelectricity in PbTiO3. J Appl Phys. 2014;115:104105. doi: 10.1063/1.4868320
  • Vanderbilt D, Cohen MH. Monoclinic and triclinic phases in higher-order Devonshire theory. Phys Rev B. 2001;63:094108. doi: 10.1103/PhysRevB.63.094108
  • Iwata M, Kutnjak Z, Ishibashi Y, et al. Theoretical analysis of the temperature-field phase diagrams of perovskite-type ferroelectrics. J Phys Soc Jpn. 2008;77:034703. doi: 10.1143/JPSJ.77.034703
  • Iwata M, Ando K, Maeda M, et al. Temperature-field phase diagram under electric field along [111]c direction in BaTiO3. Jpn J Appl Phys. 2015;54:051501. doi: 10.7567/JJAP.54.051501
  • Ma W, Bu X. Morphotropic phase boundary, field-induced transitions and dielectric properties of PbxSr1-xTiO3. Ferroelectrics. 2018;537:90–104. doi: 10.1080/00150193.2018.1528960

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.