Publication Cover
Phase Transitions
A Multinational Journal
Volume 93, 2020 - Issue 10-11
99
Views
0
CrossRef citations to date
0
Altmetric
Articles

Structural and magnetic properties of Cd-Ni spinel ferrites: density functional theory calculations and high-temperature series expansions

ORCID Icon, , &
Pages 946-961 | Received 17 May 2020, Accepted 02 Aug 2020, Published online: 02 Sep 2020

References

  • Masala O, Seshadri R. Spinel ferrite/MnO core/Shell nanoparticles: chemical synthesis of all-Oxide exchange biased architectures. J Am Chem Soc. 2005;127(26):9354–9355. doi: 10.1021/ja051244s
  • Acharya P, Desai R, Aswal VK, et al. Structure of Co-Zn ferrite ferrofluid: a small angle neutron scattering analysis. Pramana. 2008;71(5):1069–1074. doi: 10.1007/s12043-008-0225-7
  • Makovec D, Košak A, Žnidaršič A, et al. The synthesis of spinel–ferrite nanoparticles using precipitation in microemulsions for ferrofluid applications. J Magn Magn Mater. 2005;289:32–35. doi: 10.1016/j.jmmm.2004.11.010
  • Mamiya H, Terada N, Furubayashi T, et al. Influence of random substitution on magnetocaloric effect in a spinel ferrite. J Magn Magn Mater. 2010;322(9-12):1561–1564. doi: 10.1016/j.jmmm.2009.09.023
  • Kim D-H, Zeng H, Ng TC, et al. T1 and T2 relaxivities of succimer-coated MFe23+O4 (M=Mn2+,Fe2+ and Co2+) inverse spinel ferrites for potential use as phase-contrast agents in medical MRI. J Magn Magn Mater. 2009;321(23):3899–3904. doi: 10.1016/j.jmmm.2009.07.057
  • Lu J, Ma S, Sun J, et al. Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging. Biomaterials. 2009;30(15):2919–2928. doi: 10.1016/j.biomaterials.2009.02.001
  • Yao J, Yan J, Huang Y. Preparation of ZnFe2O4/α‌ -Fe2O3 nanocomposites from sulfuric acid leaching liquor of jarosite residue and their application in lithium-ion batteries. Frontiers Chem. 2018;6:446. doi: 10.3389/fchem.2018.00446
  • Yao J, Zhang Y, Yan J, et al. Nanoparticles-constructed spinel ZnFe2O4 anode material with superior lithium storage performance boosted by pseudocapacitance. Materials Research Bulletin. 2018;104:188–193. doi: 10.1016/j.materresbull.2018.04.023
  • Yao JH, Li YW, Song XB, et al. Lithium storage performance of zinc ferrite nanoparticle synthesized with the assistance of triblock copolymer P123. J Nanosci Nanotechnol. 2018;18(5):3599–3605. doi: 10.1166/jnn.2018.14684
  • Wang C, Li Y, Ruan Y, et al. ZnFe2O4-nanocrystal-assembled microcages as an anode material for high performance lithium-ion batteries. Mater Today Energy. 2017;3:1–8. doi: 10.1016/j.mtener.2016.12.001
  • Suresh R, Moganavally P, Deepa M. Structural and magnetic properties of NiCd ferrites. IOSR J Appl Chem. 2015;8(5):1–5.
  • Huang J-R, Cheng C. Cation and magnetic orders in MnFe2O4 from density functional calculations. J Appl Phys. 2013;113(3):033912. doi: 10.1063/1.4776771
  • Senthilkumar B, Selvan RK, Vinothbabu P, et al. Structural, magnetic, electrical and electrochemical properties of NiFe2O4 synthesized by the molten salt technique. Mater Chem Phys. 2011;130(1–2):285–292. doi: 10.1016/j.matchemphys.2011.06.043
  • Cheng C. Long-range antiferromagnetic interactions in ZnFe2O4 and CdFe2O4: density functional theory calculations. Phys. Rev. B. 2008;78(13):132403.
  • Arean CO, Diaz EG, Gonzalez JMR, et al. Crystal chemistry of cadmium-zinc ferrites. J Solid State Chem. 1988;77(2):275–280. doi: 10.1016/0022-4596(88)90249-6
  • Amer MA, Hemeda OM. 57Fe Mössbauer and infrared studies of the system Co1−xCdxFe2O4. Hyperfine Interact. 1995;96(1):99–109. doi: 10.1007/BF02066276
  • Kim SJ, Lee SW, An SY. Mössbauer studies of superexchange interactions and atomic migration in CoFe2O4. J Magn Magn Mater. 2000;215:210–212.
  • Hou YH, Zhao YJ, Liu ZW, et al. First-principles investigations of Zn (Cd) doping effects on the electronic structure and magnetic properties of CoFe2O4. J Appl Phys. 2011;109(7):07A502. doi: 10.1063/1.3535442
  • Masrour R, Hamedoun M, Benyoussef A. Magnetic properties of (ZnxFe1−x)A(Mn1−xFe1+x)BO4 materials. Chem Phys Lett. 2011;513(4-6):280–284. doi: 10.1016/j.cplett.2011.07.095
  • Bercoff PG, Bertorello HR. Exchange constants and transfer integrals of spinel ferrites. J Magn Magn Mater. 1997;169(3):314–322. doi: 10.1016/S0304-8853(96)00748-2
  • Hamedoun M, Benyoussef A, Bousmina M. Magnetic properties and phase diagram of ZnxNi1−xFe2O4: high-temperature series expansions. J Magn Magn Mater. 2010;322(21):3227–3235. doi: 10.1016/j.jmmm.2010.05.030
  • Srivastava CM, Srinivasan G, Nanadikar NG. Exchange constants in spinel ferrites. Phys. Rev. B. 1979;19(1):499–508. doi: 10.1103/PhysRevB.19.499
  • Groenou AB, Bongers PF, Stuyts AL. Magnetism, microstructure and crystal chemistry of spinel ferrites Mater. Sci Eng. 1969;3:317.
  • Hamedoun M, Benyoussef A, Bousmina M. Magnetic properties of magnetic Co1−xMgxFe2O4 spinel by HTSE method. Phys B: Condensed Matter. 2011;406(9):1633–1638. doi: 10.1016/j.physb.2010.09.009
  • Masrour R, Hamedoun M, Benyoussef A. The magnetic state of diamagnetically diluted antiferromagnetic cobalt and nickel monoxide. Phys Lett A. 2009;373(37):3395–3397. doi: 10.1016/j.physleta.2009.07.037
  • Mounkachi O, Hamedoun M, Belaiche M, et al. Critical behaviour and magnetic properties of A–B spinel ZnxCu1−xFe2O4. Solid State Commun. 2011;151(13):938–942. doi: 10.1016/j.ssc.2011.04.008
  • Azouaoui A, Salmi S, Benzakour N, et al. Structural and magnetic properties of Co–Zn ferrites: density functional theory calculations and high-temperature series expansions. Comput Condensed Matter. 2020;23:e00454. doi: 10.1016/j.cocom.2019.e00454
  • Guttmann AJ, Gaunt DS. Phase Transitions and Critical Phenomena. 1974.
  • Stanley HE. High-temperature expansions for the classical heisenberg model. I. Spin correlation function. Phys Rev. 1967;158(2):537–545. doi: 10.1103/PhysRev.158.537
  • Hamedoun M, Bakrim H, Bouslykhane K, et al. A study of the critical behaviour of a normal ferrimagnetic spinel by high-temperature series expansions. J Phys: Condensed Matter. 2008;20(12):125216.
  • Giannozzi P, Baroni S, Bonini N, et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials. J Phys: Condensed Matter. 2009;21(39):395502.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B. 1990;41(11):7892–7895. doi: 10.1103/PhysRevB.41.7892
  • Cheng C, Liu C-S. Vol. 145. IOP Publishing; 2009. p. 012028 Effects of cation distribution in ZnFe 2 O 4 and CdFe 2 O 4: ab initio studies, number: 012028.10, pages:1088, year: 2009.
  • O'Brien CJ, Rák Z, Brenner DW. Free energies of (Co, Fe, Ni, Zn)Fe2O4 spinels and oxides in water at high temperatures and pressure from density functional theory: results for stoichiometric NiO and NiFe2O4 surfaces. J Phys: Condensed Matter. 2013;25(44):445008.
  • Murnaghan FD. The compressibility of media under extreme pressures. Proc Natl Acad Sci USA. 1944;30(9):244–247. doi: 10.1073/pnas.30.9.244
  • Ashcroft NW, Denton AR. Vegard's law. Phys Rev A. 1991;43(6):3161–3164. doi: 10.1103/PhysRevA.43.3161
  • Fritsch D, Ederer C. Epitaxial strain effects in the spinel ferrites CoFe2O4 and NiFe2O4 from first principles. Phys Rev B. 2010;82(10):104117. doi: 10.1103/PhysRevB.82.104117
  • Jadhav SP, Toksha BG, Jadhav KM, et al. Effect of cadmium substitution on structural and magnetic properties of nano sized nickel ferrite. Chinese J Chem Phys. 2010;23(4):459–464. doi: 10.1088/1674-0068/23/04/459-464
  • Vasanthi V, Shanmugavani A, Sanjeeviraja C, et al. Microwave assisted combustion synthesis of CdFe2O4: magnetic and electrical properties. J Magn Magn Mater. 2012;324(13):2100–2107. doi: 10.1016/j.jmmm.2012.02.018
  • Su M, Liao C, Chan T, et al. Incorporation of cadmium and nickel into ferrite spinel solid solution: X-ray diffraction and X-ray absorption fine structure analyses. Environ Sci Technol. 2018;52(2):775–782. doi: 10.1021/acs.est.7b04350
  • Nikumbh AK, Nagawade AV, Gugale GS. The formation, structural, electrical, magnetic and Mössbauer properties of ferrispinels, Cd1−x Nix Fe2O4. J Mater Sci. 2002;37(3):637–647. doi: 10.1023/A:1013790129045
  • Bushkova VS. 2017. Influence of Cd2+ Ions Substitution on the Magnetic Properties of Ni-Cd Ferrites, publisher: Sumy State University.
  • Graves Morris P, Baker GA, eds. Padé Approximants ed Rota Gian-Carlo. London: Addison-Wesley; 1981.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.