Publication Cover
Phase Transitions
A Multinational Journal
Volume 93, 2020 - Issue 10-11
337
Views
39
CrossRef citations to date
0
Altmetric
Articles

Preparation method and cerium dopant effects on the properties of BaMnO3 single perovskite

ORCID Icon &
Pages 981-991 | Received 13 Jun 2020, Accepted 25 Aug 2020, Published online: 10 Sep 2020

Reference

  • Alivisatos AP. Semiconductor clusters nanocrystals, and quantum dots. Science. 1996;271:933–937. doi: 10.1126/science.271.5251.933
  • Solovyev IV, Terakura K. Spin canting in three-dimensional perovskite manganites. Phys Rev B. 2001;63:174425. doi: 10.1103/PhysRevB.63.174425
  • Fath M, Freisem S, Menovsky AA, et al. Spatially Inhomogeneous metal-Insulator transition in doped manganites. J A Sci. 1999;285:1540–1546.
  • Garcia V, Fusil S, Bouzehouane KS, et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature. 2009;460:81–84. doi: 10.1038/nature08128
  • Loudon JC, Mathur ND, Midgley PA. Charge-ordered ferromagnetic phase in La0.5Ca0.5MnO3. Nature. 2002;420:797–800. doi: 10.1038/nature01299
  • Sun JZ, Abraham DW, Rao RA, et al. Thickness-dependent magneto-transport in ultrathin manganite films. Appl Phys Lett. 1999;74:3017–3019. doi: 10.1063/1.124050
  • Zhang J, Tanaka H, Kanki T, et al. Strain effect and the phase diagram of La1−xBaxMnO3 thin films. Phys Rev B. 2001;64:184404. doi: 10.1103/PhysRevB.64.184404
  • Islam R, Choudhury S, Rahman SN, et al. The effect of manganese doping on the grain size and transition temperature of barium titanate ceramics. J Ceramic Processing Res. 2012;13:248–251.
  • Khan M. Preparation of small-grained and large-grained ceramics from Nb-doped BaTiO3. J Am Ceram Soc. 1971;54:452–454. doi: 10.1111/j.1151-2916.1971.tb12383.x
  • Rahman MN, Manalert R. Grain boundary mobility of BaTiO3 doped with aliovalent cation. J Eur Ceramic Soc. 1998;18:1063–1071. doi: 10.1016/S0955-2219(97)00215-X
  • Biswas A, Chandra S, Phan MH, et al. Magnetocaloric properties f nanocrystalline LaMnO3: enhancement of refrigerant capacity and relative cooling power. J Alloys Comp. 2012;V-545:157–161. doi: 10.1016/j.jallcom.2012.08.001
  • Selmi A, M’nassri R, Koubaa WC, et al. Influence of transition metal doping (Fe, Co, Ni and Cr) on magnetic and magnetocaloric properties of Pr0.7Ca0.3MnO3 manganites. Ceram Int. 2015;41:10177–10184. doi: 10.1016/j.ceramint.2015.04.123
  • Maatar SC, M’nassri R, Koubaa WC, et al. Structural, magnetic and magnetocaloric properties of La0.6Ba0.2Sr0.2MnO3 manganites (0≤x≤0.2). J Solid State Chem. 2015;225:83–88. doi: 10.1016/j.jssc.2014.12.007
  • M’nassri R, Boudjada NC, Cheikhouhou A. Nearly constant magnetic entropy change involving the enhancement of refrigerant capacity in (La0.6Ba0.2Sr0.2MnO3)1-x/(Co2O3)x composite. Ceram Int. 2016;42:7447–7454. doi: 10.1016/j.ceramint.2016.01.149
  • Vijatovic MM, Bobic JD, Stojanovc BD. History and challenges of barium titanate: part I. Sci Sinter. 2008;40:155–165. doi: 10.2298/SOS0802155V
  • Stojanovc BD, Skorokhod VV, Nikolic MV, eds. New York: Kluwer Academic/Plenum publishers; 1999; p. 367–376.
  • Yasmin S, Choudhury S, Hakim MA, et al. Structural and dielectric properties of pure and cerium doped barium titanate. J Ceram Process Res. 2011;12:387–391.
  • Deml AM, Holder AM, Ohayre RP, et al. Intrinsic material properties dictating oxygen vacancy formation energetics in metal oxides. J Phys Chem Lett. 2015;6:1948–1953. doi: 10.1021/acs.jpclett.5b00710
  • Tsur Y, Dunbar TD, Randall CA. Crystal and defect chemistry of rare earth cations in BaTiO3. J Electroceram. 2001;7:25–34. doi: 10.1023/A:1012218826733
  • Kenyon AJ. Recent developments in rare-earth-doped materials for optoelectronic. Prog Quant Electron. 2002;26:225–284. doi: 10.1016/S0079-6727(02)00014-9
  • Bhavani AG, Kim WYSO, Lee JS. Barium substituted lanthanum manganite perovskite for CO2 reforming of methane. ACS Catal. 2013;3:1537–1544. doi: 10.1021/cs400245m
  • Manjunatha SO, Rao A, Lin T-Y, et al. Effect of Ba substitution on structural, electrical and thermal properties of La0.65Ca0.35xBaxMnO3 (0≤x≤0.25) manganites. J Alloys Compd. 2015;619:303–310. doi: 10.1016/j.jallcom.2014.09.042
  • Ayadi F, Regarding Y, Cheikhrouhou W, et al. Preparation of nanostructured La0.7Ca0.3-xBaxMnO3 ceramics by a combined sol-gel and spark plasma sintering route and resulting magnetocaloric properties. J Magn Magn Mater. 2015;381:215–219. doi: 10.1016/j.jmmm.2014.12.047
  • Parida SK, Choudhary RNP, Achary PGR. Study of structural and electrical properties of polycrystalline Pb(Cd1/3Ti1/3W1/3)O3 tungsten perovskite. Int J Microstruct Mater Prop. 2020;15:107–121.
  • Van BL, Elemans JBAA, van der Veen KR, et al. The crystallographic and magnetic structures of La1−xBaxMn1−xMexO3 (Me = Mn or Ti). J Solid State Chem. 1971;3:238–242. doi: 10.1016/0022-4596(71)90034-X
  • Hu CG, Liu H, Lao CS, et al. Size-manipulable synthesis of single crystalline BaMnO3 and BaTi1/2Mn1/2O3 nanorods/nanowires. J Phys Chem B. 2006;110:14050–14054. doi: 10.1021/jp063459+
  • Cullity BD. Elements of X-ray diffraction. Reading (MA): Addison-Wesley; 1967; p. 388.
  • Parida SK. Structural behavior of Cu0.5Ag0.5 and Cu0.5Al0.5 alloys synthesized by co-melting technique. Adv Sci Lett. 2016;22(2):584–587. doi: 10.1166/asl.2016.6889
  • Prabhu YT, Rao KV, Kumar VSS, et al. X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World J Nano Sci Eng. 2014;4:21–28. doi: 10.4236/wjnse.2014.41004
  • Cole KS, Cole RH. Dispersion and absorption in dielectrics-I. Alternating current characteristics. J Chem Phys. 1941;9:341–351. doi: 10.1063/1.1750906
  • Von Hippel A. Dielectric and Waves. New York: John Wiley and Sons; 1954.
  • Barsoum M. Fundamentals of ceramics. New York: Mc Graw-Hill; 1977; p. 543.
  • Maxwell JC. Electricity and magnetism vol. 1. Oxford: Clarendon Press; 1892.
  • Wagner KW. Erlarung der dielektrischen nachwirkungsvorgange auf Grund Maxwellscher Vorstellungen. Archiv für Elektrotechnik. 1914;2(9):371–387. doi: 10.1007/BF01657322
  • Selvasekarapandian S, Vijaykumar M. The ac impedance spectroscopy studies on LiDyO2 Mater. Chem Phys. 2003;80:29–33.
  • Suchanicz J. Low frequency dielectric relaxation of Na0.5Bi0.5TiO3 ceramics. Mat Sci Eng B. 1998;55:114–118. doi: 10.1016/S0921-5107(98)00188-3
  • James AR, Srinivas K. Low temperature fabrication and impedance spectroscopy of PMN-PT ceramics. Mater Res Bull. 1999;34:1301–1310. doi: 10.1016/S0025-5408(99)00127-0
  • Nadeem M, Akhatar MJ. Melting/collapse of charge orbital ordering and spread of relaxation time with frequency in La0.50Ca0.50MnO3+δ by impedance spectroscopy. J Appl Phys. 2008;104:103713. doi: 10.1063/1.3028264
  • Younas M, Nadeem M, Atrf M, et al. Metal-semiconductor transition in NiFe2O4 nanoparticles due to reverse cationic distribution by impedance spectroscopy. J Appl Phys. 2011;109:093704. doi: 10.1063/1.3582142
  • Jonscher AK. Presentation, and interpretation of dielectric data. Thin Solid Films. 1978;50:187–204. doi: 10.1016/0040-6090(78)90105-0
  • Hossen MB, Hossain AKMA. Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4. J Adv Ceram. 2015;4:217–225. doi: 10.1007/s40145-015-0152-2
  • Jonscher AK. The universal dielectric response. Nature. 1977;267:673–679. doi: 10.1038/267673a0
  • Bauerle JE. Study of solid electrolyte polarization by a complex admittance method. J Phys Chem Solids. 1969;30:2657–2670. doi: 10.1016/0022-3697(69)90039-0
  • Parida SK, Choudhary RNP, Achary PGR. Structure and ferroelectric properties of lead nickel tungsten titanate: Pb(Ni1/3Ti1/3W1/3)O3 single perovskite. Ferroelectrics. 2019;551:109–121. doi: 10.1080/00150193.2019.1658036
  • Parida BN, Parida RK, Panda A. Multi-ferroic, and optical spectroscopy properties of (Bi0.5Sr0.5) (Fe0.5Ti0.5) O3 solid solution. J Alloys Comp. 2017;696:338–344. doi: 10.1016/j.jallcom.2016.11.261
  • Dehury SK, Achary PGR, Choudhary RNP. Electrical and dielectric properties of Bismuth Holmium Cobalt Titanate (BiHoCoTiO6): a complex Double perovskite. J Mater Sci: Mater Electron. 2018;29:3682–3689.
  • Hajra S, Sahu M, Purohit V, et al. Dielectric, conductivity, and ferroelectric properties of lead-free electronic ceramic:0.6Bi(Fe0.98Ga0.02)O3-0.4BaTiO3. Heliyon. 2019;5:e01654. doi: 10.1016/j.heliyon.2019.e01654
  • Mohanty NK, Satapathy SK, Behera B, et al. Complex impedance properties of LiSr2Nb5O15 ceramic. J Adv Ceram. 2012;1:221–226. doi: 10.1007/s40145-012-0025-x
  • Sinha SK, Choudhary SN, Choudhary RNP., Studies of structural, dielectric and electrical behavior of Pb(Mn1/4Co1/4W1/2)O3 ceramics. J Mater Sci. 2004;39:315–318. doi: 10.1023/B:JMSC.0000007764.91626.8f

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.