Publication Cover
Phase Transitions
A Multinational Journal
Volume 94, 2021 - Issue 1
188
Views
3
CrossRef citations to date
0
Altmetric
Review

LLT structural changes in metal liquids as a basis for a thermal treatment technology of melts: a review

, ORCID Icon, ORCID Icon &
Pages 1-22 | Received 10 Dec 2020, Accepted 14 Jan 2021, Published online: 02 Feb 2021

References

  • Mott N. Электроны в неупорядоченных структурах [Electrons in disordered structures]. Moscow: Mir; 1969. Russian.
  • Elansky GN, Elansky DG. Строение и свойства расплавов [The structure and properties of the melts]. Moscow: MGVMI; 2006. Russian.
  • Tsepelev VS, Konashkov VV, Baum BA. Свойства металлических расплавов [Properties of metal melts]. Yekaterinburg: USTU-UPI; 2008. Russian.
  • Stewart GW. X-ray diffraction in liquids. Rev Mod Phys. 1930;2:116–122.
  • Benz CA, Stewart GW. The cybotactic condition of isopentane in the region of the critical point. Phys Rev. 1934;46:703–706.
  • Kirkwood JG. Statistical mechanics of fluid mixtures. J Chem Phys. 1935;3:300–313.
  • Kirkwood JG. Statistical mechanics of liquid solutions. J Chem Phys. 1936;19:275–307.
  • Bernal JD. An attempt at a molecular theory of liquid structure. Trans Faraday Soc. 1937;33:27–40.
  • Bernal JD. Geometry of the structure of monatomic liquids. Nature. 1960;185:68–70.
  • Gingrich NS. The diffraction of X-rays by liquid elements. Rev Mod Phys. 1943;15:90–99.
  • Danilov VI. Строение и кристаллизация жидкостей [The structure and crystallization of liquids]. Kiev: USSR Academy of Sciences; 1937. Russian.
  • Danilov VI, Radchenko AV. Рентгеноструктурные исследования жидких металлов [X-ray structural studies of liquid metals]. Moscow: Solid State Physics; 1937. Russian.
  • Van Der Waals JD. Lehrbuch der thermodynamik [Textbook of thermodynamics]. Leipzig: Verlag von Johann Amborosius Barth; 1912; German.
  • Frenkel JI. Введение в теорию металлов [Introduction to metal theory]. Leningrad: Science; 1972. Russian.
  • Stewart GW. X-ray diffraction in water. Phys Rev. 1931;37(1):9–16.
  • Yinab FS, Suna XF, Guana HR, et al. Effect of thermal history on the liquid structure of a cast nickel-base superalloy M963. J Alloy Compd. 2004;364(1–2):225–228.
  • Fredriksson H, Fredriksson E. A model of liquid metals and its relation to the solidification process. Mater Sci Eng A Struct. 2005;2:455–459.
  • Vatolin NA, Pastukhov EA, Lisin VL, et al. Дифракционные исследования строения высокотемпературных расплавов [Diffraction studies of the structure of high-temperature melts]. Yekaterinburg: Ural Branch of the Russian Academy of Sciences; 2003. Russian.
  • Grigorovich VK. Металлическая связь и структура металлов [Metal bond and metal structure]. Moscow: Nauka; 1988. Russian.
  • Arkharov VI, Novokhatsky IA. О квазиполикристаллической модели расплавов [On the quasi-polycrystalline model of melts]. In: I.I. Telitsyn, editor. Structure and properties of metal and slag melts. Sverdlovsk: Ural University; 1974. p. 52–54. Russian.
  • Ladyanov VI, Arkharov VI, Novokhatsky IA, et al. Структурные микронеоднородности расплавов кадмия, висмута, индия, олова и свинца [Structural microinhomogeneities of cadmium, bismuth, indium, tin, and lead melts]. Russ Metal. 1972;34(5):1060–1065. Russian.
  • Novokhatsky IA, Kisunko VZ, Ladyanov VI. Особенности проявлений различных типов структурных превращений в металлических расплавах [Features of manifestations of various types of structural transformations in metal melts]. Steel Transl. 1985;9:1–9. Russian.
  • Baum BA. Металлические жидкости [Metallic fluids]. Moscow: Nauka; 1979. Russian.
  • Baum BA, Khasin GA, Tyagunov GV, et al. Жидкая сталь [Liquid steel]. Moscow: Metallurgy; 1984. Russian.
  • Elliott SR. Medium-range structural order in covalent amorphous solids. Nature. 1991;354:445–452.
  • Lifshits BG. Металлография [Metallography]. Moscow: Metallurgy; 1990. Russian.
  • Naberukhin Y. Что такое структура жидкости? [What a fluid structure is?]. J Struct Chem. 1981;22(6):62–80. Russian.
  • Zhukova LA. Строение металлических жидкостей [The structure of metallic fluids: a tutorial]. Yekaterinburg: USTU-UPI; 2002. Russian.
  • Polukhin VA, Vatolin NA, Potemkina EA. Структурные единицы ближнего порядка в аморфных металлах и полупроводниках [Short-range structural units in amorphous metals and semiconductors]. Inorg Mater. 2002;2:8–13. Russian.
  • Turnball D. Kinetics of solidification of supercooled liquid mercury droplets. J Chem Phys. 1952;20(2):411–424.
  • Frank FG. Supercooling of liquids. P Roy Soc Lond A Mat. 1952;215(1120):43–46.
  • Popel SI, Spiridonov MA, Zhukova LA. Атомное упорядочение в расплавленных и аморфных металлах (по данным электронографии) [Atomic ordering in molten and amorphous metals (according to electron diffraction data)]. Ekaterinburg: USTU; 1997. Russian.
  • Popel PS. Метастабильная микрогетерогенность расплавов эвтектикой и монотектикой и ее влияние на структуру сплава после затвердевания [Metastable microheterogeneity of melts by eutectics and monotectics and its influence on the alloy structure after solidification]. Russ Metall. 2005;1:22–48. Russian.
  • Popel PS, Presnyakova EL, Pavlov VA, et al. Область существования метастабильной квазиэвтектической структуры в системе Sn-Pb [The region of existence of a metastable quasi-eutectic structure in the Sn-Pb system]. Russ Metall. 1985;4:198–201. Russian.
  • Gavrilin IV. Основы модели микронеоднородного строения жидких металлов. Повышение качества отливок и слитков [Fundamentals of the model of microinhomogeneous structure of liquid metals. Improving the quality of castings and ingots]. Gorky: GPI; 1979. Russian.
  • Gavrilin IV. Плавление и кристаллизация металлов и сплавов [Melting and crystallization of metals and alloys]. Vladimir: Vladimir State University; 2000. Russian.
  • Skrebtsov AM. Изучение структурных перестроек в жидких металлах на модельном расплаве [Study of structural rearrangements in liquid metals on a model melt]. Report Priazovskyi State Tech Univ Sect Techn Sci. 2008;18:61–65. Russian.
  • Gay SL. Особенности процесса кристаллизации металлов [Features of the process of crystallization of metals]. Vesn Yanka Kupala State Univ Grodno 6 Eng Sci. 2012;2:36–43. Russian.
  • Ilyinsky AG. Особенности атомного строения металлических материалов в жидком и аморфном состояниях [Features of the atomic structure of metallic materials in liquid and amorphous states]. Nanosyst Nanomater Nanotechnologies. 2010;8(3):483–502. Russian.
  • Poole PH, Grande T, Angell CA, et al. Polymorphic phase transitions in liquids and glasses. Science. 1997;275(5298):322–323.
  • Rao KR. Phase transitions in liquids. Curr Sci. 2001;80:1098–1100.
  • Yarger JL, Wolf GH. Polymorphism in liquids. Science. 2004;306:220–221.
  • Kaban I, Halm T, Honyer W. Structure of molten copper-germanium alloys. J Non-Crystal Solids. 2001;288:96–102.
  • Wertman AV, Samarin AM. Свойства расплавов железа [Properties of iron melts]. Moscow: Nauka; 1969. Russian.
  • Geld PV. Водород и физические свойства металлов и сплавов [Hydrogen and physical properties of metals and alloys]. Mocsow: Nauka; 1985. Russian.
  • Gelchinsky BR, Vatolin NA. Особенности свойств жидких металлов вблизи критической температуры. Эффект многоэлектронных корреляций [Features of the properties of liquid metals near a critical temperature. The effect of multielectron correlations]. High Temp. 1987;25(5):891–899. Russian.
  • Ostrovsky OI, Grigoryan VA, Vishkarev AF. Свойства металлических расплавов [Properties of metal melts]. Moscow: Metallurgy; 1988. Russian.
  • Arsentiev PP, Anikin Y, Zamyatin VV, et al. Об аномалиях вязкости металлических расплавов [About viscosity anomalies of metal melts]. Steel Transl. 1985;9:10–15. Russian.
  • Starostin IE, Bykov VI. Kinetic theorem of modern non-equilibrium thermodynamics. Raleigh (NC): Open Science; 2017.
  • Condepudi D, Prigogine I. Modern thermodynamics: from heat engines to dissipative structures. Chichester: Wiley; 1998.
  • Tyagunov AG, Baryshev EE, Stepanova NN. Влияние структуры расплава на свойства жаропрочных никелевых сплавов в твердом состоянии [The influence of the melt structure on the properties of heat-resistant nickel alloys in the solid state]. Yekaterinburg: Ural Branch of the Russian Academy of Sciences; 2010. Russian.
  • Vatolin NA, Pastukhov EA, Lisin VL, et al. Диффракционные исследования строения высокотемпературных расплавов [Diffraction studies of the structure of high-temperature melts]. Yekaterinburg: Ural Branch of the Russian Academy of Sciences; 2003. Russian.
  • Ri H, Ri E, Khimukhin SN, et al. Тепловые воздействия на структурообразование и свойства алюминиевых сплавов [Thermal effects on the structure formation and properties of aluminum alloys]. Pac State Univ Bull. 2013;2(29):137–144. Russian.
  • Sidorov V, Popel P, Calvo-Dahlborg M, et al. Heat treatment of iron based melts before quenching. Mater Sci Eng A. 2001;304–306:480–486.
  • Vatolin NA, Pastukhov EA, Kern EM. Влияние температуры на структуру расплавленных железа, никеля, палладия и кремния [The effect of temperature on the structure of molten iron, nickel, palladium and silicon]. Sov Phys Dokl. 1974;217(1):127–130. Russian.
  • Klimenkov EA, Geld PV, Baum BA, et al. О структуре ближнего порядка в жидких железе, кобальте и никеле [On the structure of short-range order in liquid iron, cobalt and nickel]. Sov Phys Dokl. 1976;230(1):71–73. Russian.
  • Li XF, Zu FQ, Liu LJ, et al. Hump phenomenon on resistivity–temperature curve in liquid Bi, Sb and their alloys. Phys Chem Liq. 2007;45:531.
  • Emuna M, Mayo M, Makov G, et al. Liquid structure and temperature invariance of sound velocity in supercooled Bi melt. J Chem Phys. 2014;140(9):094502.
  • Kuts DA, Vorontsov AG. The change in the structure of liquid metals at high temperatures. Bull Russ Acad Sci Phys. 2008;72(10):1385–1387.
  • Sun C, Geng HR. Viscous and structural behaviors of molten In–Sn alloys. Mater Charact. 2005;55:383–387.
  • Wu AQ, Guo LJ, Liu CS. Structural characteristics of liquid Sn. Chin Phys Lett. 2005;22:1991–1993.
  • Fisher IZ. Статистическая теория жидкостей [Statistical theory of liquids]. Moscow: Nauka; 1961. Russian.
  • Danilov AI. О характере упорядоченности атомной структуры жидких металлов [On the nature of the ordering of the atomic structure of liquid metals]. In: E.Z. Spector, editor. Problems of metal science and metal physics. Moscow: Metallurgizdat; 1952. p. 336–354. Russian.
  • Slukhovsky OI. Структурные изменения жидкого железа [Structural changes in liquid iron]. Ukr J Phys. 1975;20(12):1961–1965. Russian.
  • Yavoysky VI, Yavoysky AV. Научные основы современных процессов производства стали [Scientific foundations of modern steel production processes]. Moscow: Metallurgy; 1987. Russian.
  • Kurita R, Tanaka H. Critical-like phenomena associated with liquid-liquid transition in a molecular liquid. Science. 2004;306:845–848.
  • Zu FQ, Li XF, Guo LJ, et al. Temperature dependence of liquid structures in In–Sn20: diffraction experimental evidence. Phys Lett A. 2004;324:472.
  • Jia P, Liu Y, Zhang JY, et al. Effect of melt overheating treatment on the melt structure and solidified structures of Al75Bi9Sn16 immiscible alloy. Mater Sci Forum. 2017;898:223–230.
  • Zu FQ, Chen ZH, Zou L, et al. Kinetics of liquid–structure change of In–Sn and In–Pb melts. Phys Chem Liq. 2008;46(4):433–441.
  • Zu FQ, Zhu ZG, Guo LJ, et al. Liquid-liquid transition in Pb-Sn melts. Phys Rev B. 2001;64:180203.
  • Zu FQ, Zhu ZG, Zhang B, et al. Post-melting anomaly of Pb-Bi melts observed by internal friction technique. J Phys. 2001;13:11435–11441.
  • Zu FQ, Zhu ZG, Guo LJ, et al. Observation of an anomalous discontinuous liquid-structural change with temperature. Phys Rev Lett. 2002;89:125505.
  • Zu FQ, Li XF, Guo LJ, et al. Temperature dependence of liquid structures in In–Sn20: diffraction experimental evidence. Phys Lett A. 2004;324:472–478.
  • Li XF, Zu FQ, Ding HF, et al. Anomalous change of electrical resistivity with temperature in liquid Pb-Sn alloys. Phys B Condens Matter. 2005;358:126–131.
  • Xi Y, Zu FQ, Li XF, et al. High-temperature abnormal behavior of resistivities for Bi-In melts. Phys Lett. 2004;329:221–225.
  • Li Q, Zu FQ, Li XF, et al. The electrical resistivity of liquid Pb-Bi alloy. Modern Phys Lett B. 2006;20:151–158.
  • Chen ZH, Zu FQ, Li XF, et al. Temperature-induced liquid-liquid transition process in eutectic Pb–Sn melt explored from kinetic viewpoint. J Phys Condens Matter. 2007;19:116106.
  • Li XF, Zu FQ, Ding HF, et al. High-temperature liquid-liquid structure transition in liquid Sn-Bi alloys: experimental evidence by electrical resistivity method. Phys Lett A. 2006;354:325–329.
  • Liu CS, Li GX, Liang YF, et al. Quantitative analysis based on the pair distribution function for understanding the anomalous liquid-structure change in In20Sn80. Phys Rev B. 2005;71:4204–4210.
  • Khairulin RA, Stankus SV, Sorokin AL. Determination of the two-melt phase boundary and study of the binary diffusion in liquid Bi–Ga system with a miscibility gap. J Non-Crystal Solids. 2007;297:120–130.
  • Yakymovych A, Shtablavy I, Mudry S. Structural studies of liquid Co–Sn alloys. J Alloys Compd. 2014;610:438–442.
  • Korzhavina OA, Popel PS, Brodova IG, et al. Необратимые изменения вязкости расплавов Al-Mn при высоких температурах [Irreversible changes in the viscosity of Al-Mn melts at high temperatures]. Russ Metall. 1990;6:23–28. Russian.
  • Korzhavina OA. The region of existence of metastable colloidal microinhomogeneity in melts of the Al-Ge system. Inorg Mater. 1991;27(7):1424–1427. Russian.
  • Korzhavina OA, Brodova IG, Nikitin VI. Вязкость и электросопротивление расплавов Al-Si и влияние их структурного состояния на строение литого металла [Viscosity and electrical resistivity of Al-Si melts and the influence of their structural state on the structure of cast metal]. Russ Metall. 1991;1:10–17. Russian.
  • Popel PS, Chikova OA, Matveev VM. Metastable colloidal states of liquid metallic solutions. High Temp Mater Proc. 1995;4(4):219–233.
  • Chikova OA. Флуктуационный свободный объем как характеристика структрного состояния металлической жидкости [Fluctuation free volume as a characteristic of the structural state of a metallic fluid]. Russ Metall. 2008;9:65–76. Russian.
  • Chikova OA. Самопроизвольное диспергирование в процессах сплавообразования как причина микрорасслоения металлических расплавов [Spontaneous dispersion in the processes of alloy formation as a cause of micro-delamination of metal melts]. Russ Metall. 2008;9:54–64. Russian.
  • Chikova OA. О структурных переходах в жидких металлах и сплавах [About structural transitions in liquid metals and alloys]. Russ Metall. 2009;1:18–30. Russian.
  • Geld PV, Korshunov VA, Petrushevsky MS. Некоторые особенности жидких сплавов кремния с железом, марганцем и хромом [Some features of liquid silicon alloys with iron, manganese and chromium]. Russ Metall. 1960;6:129. Russian.
  • Elansky GN, Kudrin VA. Свойства и строения расплавов на основе железа [Properties and structures of iron-based melts]. Bull South Ural State Univ Metall Ser. 2015;15(3):11–19. Russian.
  • Wang ZM, Geng HR, Zhou GR, et al. Metastable microheterogeneity in liquid monotectic Bi-Ga alloys. Int J Cast Metals Res. 2011;24:65–69.
  • Zhou C, Hu L, Sun Q, et al. Indication of liquid-liquid phase transition in CuZr-based melts. Appl Phys Lett. 2013;103:171904.
  • Wang YB, Zhao G, Liu CS, et al. Ab initio molecular dynamics simulations on the structural change of liquid eutectic alloy Si15Te85 from 673 to 1373 K. Phys B Condens Matter. 2010;405:785–792.
  • Zu FQ, Zhu ZG, Guo LJ, et al. A reversible transition in liquid Bi under pressure. Phys Rev B2001;64:180203.
  • Greenberg Y, Yahel E, Caspi EN, et al. Evidence for a temperature-driven structural transformation in liquid bismuth. Europhys Lett. 2009;86:36004.
  • Wang YQ, Wu YQ, Liu JT, et al. Discontinuous structural phase transition behaviour in multiple component alloy melts. Chin Phys Lett. 2006;23:2513–2515.
  • Popel PS, Sidorov VE. Microheterogeneity of liquid metallic solutions and its influence on the structure and properties of rapidly quenched alloys. Mater Sci Eng A. 1997;226–228:237–244.
  • Sivkov G, Yagodin D, Kofanov S, et al. Physical properties of the liquid Pd-18 at.% Si alloy. J Non-Crystal Solids. 2007;353:3274–3728.
  • Popel PS. Область существования метастабильной микрогетерогенности в расплавах Al-Sn [The region of existence of metastable microheterogeneity in Al-Sn melts]. Russ J Phys Chem A. 1989;63(3):838–841. Russian.
  • Rozhitsyna EV, Chikova OA, Popel PS, et al. Взаимосвязь структурного состояния твердых и жидких сплавов Al–Co [The relationship of the structural state of solid and liquid Al–Co alloys]. Russ Metall. 2002;5:36–41. Russian.
  • Lykasov DK, Chikova OA. Вязкость расплавов Al–Cu [The viscosity of Al–Cu melts]. Russ Metall. 2007;4:31–36. Russian.
  • Ladyanov VI, Lagunov SV, Pakhomov SV. Об осциллирующих релаксационных процессах в неравновесных металлических расплавах после плавления [On oscillating relaxation processes in nonequilibrium metal melts after melting]. Russ Metall. 1998;5:20–23. Russian.
  • Vasin MG, Ladyanov VI, Bovin VP. О механизме немонотонных релаксационных процессов в металлических расплавах [On the mechanism of nonmonotonic relaxation processes in metallic melts]. Russ Metall. 2000;5:27–32. Russian.
  • Kolotukhin EV, Tyagunov GV, Nikolaev BV, et al. О кинетическом режиме процесса релаксации структуры многокомпонентного металлического расплава [On the kinetic regime of the process of relaxation of the structure of a multicomponent metal melt]. Russ J Phys Chem A. 1989;63(4):1118–1121. Russian.
  • Tyagunov AG, Baryshev EE, Baum BA, et al. Особенности структурных изменений жидких жаропрочных никелевых сплавов в зависимости от содержание углерода [Features of structural changes in liquid heat-resistant nickel alloys depending on the carbon content]. Russ Metall. 2006;3:66–69. Russian.
  • Xiao C, Qi Z, Xiao L, et al. On crystallization behavior and thermal stability of Cu64Zr36 metallic glass by controlling the melt temperature. J Non-Cryst Solids. 2016;452(9):336–341.
  • He Y, Li J, Wang JY, et al. Liquid–liquid structure transition and nucleation in undercooled Co-B eutectic alloys. Appl Phys A Mater. 2017;123(6):391.
  • Chen ZH, Bao XD, Huang ZJ, et al. Influence of melt overheating on microstructure and soldering properties of SnBiCu solder alloy. Kovove Mater. 2015;53:79–84.
  • Li Q, Zu FQ, Li XF, et al. The electrical resistivity of liquid Pb–Bi alloy. Mod Phys Lett B. 2006;20:151.
  • Zu FQ, Zhu ZG, Guo LJ, et al. Hurst’s empirical law in the probability of atomic distribution in liquids. Phys Rev Lett. 2002;89:1.
  • Chen ZH, Zheng W, Zu FQ, et al. Influence of liquid structure change on Microstructure and properties of SnZnBi Solder alloy. Adv Mater Res. 2012;463–464:489–493.
  • Zu FQ, Chen J, Li XF, et al. A new viewpoint to the mechanism for the effects of melt overheating on solidification of Pb-Bi alloys. J Mater Res. 2009;24(7):2378–2384.
  • Xi Y, Li XF, Zu FQ. Liquid-liquid structure transition and its effects on solidification behavior of binary alloys. Adv Mater Res. 2012;554–556:714–720.
  • Fang-qiu ZU, Bing Z, Xian-fen L, et al. Effect of liquid-liquid structure transition on solidification of Sn-Bi alloys. Trans Nonferrous Met Soc China. 2007;17:893–897.
  • Rudolph P, Schaefer N, Fukuda T. Crystal growth of ZnSe from the melt. Mater Sci Eng R Rep. 1995;15:85–133.
  • Enisz M, Kristof-Mako E, Oravetz D. Phase transformation in doped Y-Ba-Cu-O superconductors obtained by different melt processing techniques. J Eur Ceram Soc. 2007;27:1105–1111.
  • Koh HJ, Rudolph P, Schaefer N, et al. The effect of various thermal treatments on supercooling of Pb-Te melts. Mater Sci Eng B. 1995;34:199–203.
  • Li P, Nikitin VI, Kandalova EG, et al. Effect of melt overheating, cooling and solidification rates on Al–16wt.%Si alloy structure. Mater Sci Eng A. 2002;332:371–374.
  • Wang J, He SH, Sun BD, et al. Grain refinement of Al–Si alloy (A356) by melt thermal treatment. J Mater Process Technol. 2003;141:29–34.
  • Stefanescu DM, Upadhya G, Bandyopadhyay D. Heat transfer-solidification kinetics Modeling of solidification of castings. Metall Mater Trans A. 1990;21:997–1005.
  • Golubev SV, Korzhavina (Chikova) OA, Popel PS, et al. Влияние вязкости и электросопротивления на структурное состояние расплавов Al-Sc и строение литого металла [Effect of viscosity and electrical resistance on the structural state of Al-Sc melts and the structure of cast metal]. Russ Metall. 1991;1:36–52. Russian.
  • Popel P, Chikova OA, Brodova IG, et al. Явление структурной наследственности с точки зрения коллоидной модели микрогетерогенного строения металлических расплавов [The phenomenon of structural heredity from the point of view of the colloidal model of the microheterogeneous structure of metal melts]. Non-ferr Metals. 1992;9:53–56. Russian.
  • Brodova IG, Bashlykov DV, Manukhin AB, et al. Влияние температурно-временной обработки расплава на структуру и фазовый состав быстрозакристаллизованного сплава AI-1.4% Hf [Influence of temperature-time treatment of the melt on the structure and phase composition of rapidly crystallized alloy AI-1.4% Hf]. Phys Met Metallogr. 2000;89(3):62–67. Russian.
  • Sukhanova TD, Chikova OA, Popel PS, et al. Взаимосвязь структурного состояния жидких и твердых сплавов Al-Pb [The relationship of the structural state of liquid and solid alloys Al-Pb]. Russ Metall. 2000;6:11–15. Russian.
  • Tyagunov GV. О влиянии характеристик жидкого металла на свойства твердого металла [On the influence of the characteristics of liquid metal on the properties of solid metal]. Steel Transl. 1972;9:803–806. Russian.
  • Ischuk N. Исследование свойств конструкционной стали в жидком и твердом состояниях. Проблема стального слитка. [Investigation of the properties of structural steel in liquid and solid states. The problem of a steel ingot]. Russ Metall. 1976;6:41–48. Russian.
  • Lubyanoy DA, Lubyanaya SV, Sablina OI. Эффективность применения термовременной обработки и пульсирующей продувки для рафинирования железоуглеродистых расплавов [Efficiency of using thermal treatment and pulsating purging for refining iron-carbon melts]. Obrab Met/Met Work Mater Sci. 2012;4(57):103–107. Russian.
  • Tyagunov GV, Baryshev EE, Tsepelev VS, et al. Металлические жидкости. Стали и сплавы [Metallic liquids. Steel and alloys]. Yekaterinburg: Ural Federal University; 2016. Russian.
  • Piątkowski J, Szymszal J. Effect of overheating degree of molten alloy on material reliability and performance stability of AlSi17CuNiMg silumin castings. Arch Foundry Eng. 2010;10(4):173–176.
  • Deev VB, Ponomareva KV, Prikhodko OG, et al. Влияние температуры перегрева и заливки расплава на качество отливок из алюминиевых сплавов при литье по газифицируемым моделям [Influence of the temperature of overheating and pouring of the melt on the quality of castings from aluminum alloys during casting according to gasified models]. Russ J Non-Ferr Met. 2017;3:65–71. Russian.
  • Liu Z, Xie M. Hypereutectic Al-Si-Mg in situ composite prepared by melt superheating. Adv Mat Res. 2011;194–196:113–116.
  • Al Kahtani SA, Doty HW, Samuel F. Combined effect of melt thermal treatment and solution heat treatment on eutectic Si particles in cast Al–Si alloys. Int J Cast Metal Res. 2014;27(1):38–48.
  • Wang J, He S, Sun B, et al. A356 alloy refined by melt thermal treatment. Int J Cast Metal Res. 2001;3:165–168.
  • Deev VB, Selyanin IF, Prikhodko OG, et al. Наследственное влияние термовременной обработки на свойства литейных алюминиевых сплавов [The hereditary effect of thermal processing on the properties of cast aluminum alloys]. Polzunovsky Almanac. 2011;4–1:69–71. Russian.
  • Kozieła T, Latuchb J, Kąca S. Structure of melt-spun Fe–Cu–Si–B–Nb alloy. J Alloys Compd. 2014;586(1):S121–S125.
  • Shahri LF, Beitollahi A. Effect of super-heat treatment and quenching wheel speed on the structure and magnetic properties of Fe–Si–Nb–Cu–B–Al–Ge melt spun ribbons. J Non-Cryst Solids. 2008;354(14):1487–1493.
  • Shumikhin VS, Scheretsky AA, Lakhnenko VL, et al. Литые композиционные материалы с аморфной матрицей на основе циркония [Cast alloy materials with an amorphous matrix based on zirconium]. Nanosyst Nanomater Nanotechnologies. 2009;7(3):901–909. Russian.
  • Geng XG, Chen G, Fu HZ. The effect of melt superheat on interface morphological stability during directional solidification. Acta Metall Sin. 2002;38(3):225–229.
  • Wang C, Zhang J, Fu LLH. Effect of melt superheating treatment on directional solidification interface morphology of multi-component alloy. J Mat Sci Tech. 2011;27(7):668–672.
  • Fengshi Y, Zhuangqi H, Xiaofeng S. Effect of melt superheating treatment on the microstructure and high temperature stress rupture properties of M963 superalloy. Acta Metall Sin. 2003;1:75–78.
  • Jie Z, Huang T, Liu L, et al. The influence of melt superheating treatment on the cast structure and stress rupture property of IN718C superalloy. J Alloys Compd. 2017;706:76–81.
  • Zhang J, Li B, Zou MM, et al. Microstructure and stress rupture property of Ni-based monocrystal superalloy with melt superheating treatment. J Alloys Compd. 2009;484:753–756.
  • Shi Z, Liu S, Wang X, et al. Effect of melting temperature on the microstructure stability of a Ni-based single crystal superalloy. Procedia Eng. 2015;99:1415–1420.
  • Klochikhin VV, Gnatenko OV, Naumik VV. Влияние высокотемпературной термовременной обработки на качество сплава ЖС32-ВИ [The effect of high-temperature thermal treatment on the quality of the alloy ZhS32-VI]. Foundry Technol Equip. 2013;3:35–39. Russian.
  • Kablov DE, Sidorov VV, Gerasimov VV, et al. Исследования закономерностей поведения азота при получении монокристаллов жаропрочного никелевого сплава ЖС30ВИ [Studies of the laws of nitrogen behavior in the production of single crystals of heat-resistant nickel alloy ZhS30VI]. Sci Educ. 2012;4:1–12. Russian.
  • Kolotukhin EV, Avdyukhin SP, Tyagunov GV, et al. Условия существования нитридой фазы в жидком сложнолегированном никелевом сплаве [Conditions for the existence of a nitride phase in a liquid complex alloyed nickel alloy]. Steel Transl. 1989;9:115–120. Russian.
  • Su H, Wang H, Zhang J, et al. Influence of melt superheating treatment on solidification characteristics and rupture life of a third-generation Ni-based single-crystal superalloy. Metall Mater Trans B. 2018;49(4):1537–1546.
  • Zou M, Liu L, Zhang I, et al. Effect of the melt superheating treatment on the secondary arm spacing of DD3 single crystal superalloy. Acta Metall Sin. 2008;44(2):155–158.
  • Liu L, Zhen BL, Banerji A, et al. Effect of melt homogenization temperature on the cast structures of IN 738 LC superalloy. Scripta Metall Mater. 1994;30(5):593–598.
  • Wang C, Zhang J, Liu L, et al. Microstructure evolution of directionally solidified DZ125 superalloy with melt superheating treatment. J Alloys Compd. 2010;508(2):440–445.
  • Ge B, Lin L, Jun Z, et al. Microstructural evolution of directionally solidified DZ125 superalloy castings with different solidification methods. China Foundry. 2013;1:24–28.
  • Wang C, Zhang J, Liu L, et al. Effect of melt superheating treatment on directional solidification interface morphology of multi-component alloy. J Mat Sci Tech. 2011;27(7):668–672.
  • Zou MM, Zhang J, Liu L. Influence of the melt superheating treatment on solidification microstructure of DD3 Ni base single crystal superalloy. Acta Metall Sin. 2008;44(1):59–63.
  • Zou MM, Zhang J, Li B, et al. Refined dendrite and precise orientation of nickel-based monocrystal crystal superalloy with melt superheating treatment. Int J Mod Phys B. 2009;23:1105–1109.
  • Yin FS, Sun XF, Li JG, et al. Effects of melt treatment on the cast structure of M963 superalloy. Scripta Mater. 2003;48(4):425–429.
  • Zou MM, Zhang J, Li B, et al. Effect of melt overheating history on the microstructure of Ni-based single crystal superalloys. Adv Mater Res. 2011;217–218:692–696.
  • Tyagunov AG, Kostina TK, Lesnikov VP, et al. Влияние высокотемпературной обработки расплава на структуру никелевого жаропрочного сплава ЭП539Л [The influence of high-temperature melt processing on the structure of the heat-resistant nickel alloy EP539L]. Foundry Technol Equip. 1994;1:13–14. Russian.
  • Tyagunov AG, Baryshev EE, Kostina TK, et al. The effect of long-term high-temperature heat treatment at 950°C on the structure and mechanical properties of the zhs6u superalloy. Phys Met Metallogr. 1998;86(1):65–69.
  • Tyagunov AG, Baryshev EE, Kostina TK, et al. Thermal stability of the structure of a high-temperature nickel alloy fabricated by two different technologies. Met Sci Heat Treat. 1999;41(11-1):538–541.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.