Publication Cover
Phase Transitions
A Multinational Journal
Volume 94, 2021 - Issue 6-8
177
Views
3
CrossRef citations to date
0
Altmetric
Articles

Ab initio calculations, mean field approximation and Monte Carlo simulation of the electronic, magnetic and magnetocaloric properties of the double perovskite Ba2NiReO6

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 377-393 | Received 16 Dec 2020, Accepted 09 May 2021, Published online: 22 Jun 2021

References

  • Ivanov, SA, Andersson, MS, Cedervall, J, et al. Temperature-dependent structural and magnetic properties of R2MMnO6 double perovskites (R = Dy, Gd; M = Ni, Co). Sci Mater Electron. 2018;29:18581–18592.
  • M'nassri, R, Cheikhrouhou, A. Magnetocaloric properties in ordered double-perovskite Ba2Fe1−xCrxMoO6 (0≤x≤1). J Korean Phys Soc. 2014;64:879–885.
  • Hona, RK, Huq, A, Ramezanipour, F. Electrical properties of the ordered oxygen-deficient perovskite Ca2Fe0.5Ga1.5O5. Ionics (Kiel). 2019;25:1315–1321.
  • Rachedi, A, Baghdad, R, Nacef, A. Magnetic, optoelectronic and thermodynamic properties of the double perovskite Ba2NiWO6 in its stable antiferromagnetic phase. Optik. 2021;227:166032.
  • Van Santen, JH, Jonker, GH. Electrical conductivity of ferromagnetic compounds of manganese with perovskite structure. Physica. 1950;16:337–349.
  • Zong, Y, Fujita, K, Akamatsu, H, et al. Antiferromagnetism of perovskite EuZrO3. J Solid State Chem. 2010;183:168–172.
  • Salhi, A, Sayouri, S, Alimoussa, A, et al. Impedance spectroscopy analysis of Ca doped BaTiO3 ferroelectric ceramic manufactured with a new synthesis technique. Mater Today Proc. 2019;13:1248–1258.
  • Salah, LM, Mabied, AF, Abdellatif, MH. Multiferroic property of Ca1−xLaxTi1−xFexO3 perovskite structure. J Magn Magn Mater. 2018;458:10–14.
  • Schneemeyer, LF, Waszczak, JV, Zahorak, SM, et al. Superconductivity in rare earth cuprate perovskites. Mater Res Bull. 1987;22:1467–1473.
  • Yamada, Y, Kanemitsu, Y. Photoluminescence spectra of perovskite oxide semiconductors. J Lumin. 2013;133:30–34.
  • Akbari-Fakhrabadi, A, Rodríguez, O, Rojas, R, et al. Ferroelastic behavior of LaCoO3: a comparison of impression and compression techniques. J Eur Ceram Soc. 2019;39:1569–1576.
  • Allen, PB, Berger, H, Chauvet, O, et al. Transport properties, thermodynamic properties, and electronic structure of SrRuO3. Phys Rev B. 1996;53:4393–4398.
  • Liu, Y, McCabe, EE, Sinclair, DC, et al. Synthesis, structure and properties of the hexagonal perovskite, h-BaTi1−xHoxO3-x/2. J Mater Chem. 2009;19:5201–5206.
  • Abbes, L, Noura, H. Perovskite oxides MRuO3 (M = Sr, Ca and Ba): structural distortion, electronic and magnetic properties with GGA and GGA-modified Becke-Johnson approaches. Results Phys. 2015;5:38–52.
  • Iwanaga, D, Inaguma, Y, Itoh, M. Structure and magnetic properties of Sr2NiAO6 (A = W, Te). Mater Res Bull. 2000;35(3):449–457.
  • Ho, TG, Ha, TD, Pham, QN, et al. Nanosized perovskite oxide NdFeO3 as material for a carbon-monoxide catalytic gas sensor. Adv Nat Sci Nanosci Nanotechnol. 2011;2:1–5.
  • Chen, HN, Yang, SH. Carbon-Based perovskite solar cells without hole transport materials: the front runner to the market?. Adv Mater. 2017;29:1603994.
  • Yang, G, Lei, HW, Tao, H, et al. Reducing hysteresis and enhancing performance of perovskite solar cells using low-temperature processed Y-doped SnO2 nanosheets as electron selective layers. Small. 2017;13:1601769.
  • Fiebig, M. Revival of the magnetoelectric effect. J Phys D. 2005;38:R123.
  • Sidi Ahmed, S, Boujnah, M, Bahmad, L, et al. Magnetic and electronic properties of double perovskite Lu2MnCoO6: Ab-initio calculations and Monte Carlo simulation. Chem Phys Lett. 2017;685:191–197.
  • Jeng, H-T, Guo, GY. First-principles investigations of orbital magnetic moments and electronic structures of the double perovskites Sr2FeMoO6, Sr2FeReO6, and Sr2CrWO6. Phys Rev B. 2003;67:094438.
  • Rai, DP, Shankar, A, Ghimire, MP, et al. The electronic, magnetic and optical properties of double perovskite A2FeReO6 (A = Sr, Ba) from first principles approach. Comput Mater Sci. 2015;101:313.
  • Ding, H, Lin, B, Jiang, Y, et al. Low-temperature protonic ceramic membrane fuel cells (PCMFCs) with SrCo0. 9Sb0. 1O3δ cubic perovskite cathode. J Power Sources. 2008;185:937–940.
  • Dereen, PJ, Bednarkiewicz, A, Goldner, Ph, et al. Laser action in LaAlO 3:Nd 3+ single crystal. J Appl Phys. 2008;103(4):043102.
  • Rammeh, N, Ehrenberg, H, Fuess, H, et al. Structure and magnetic properties of the double-perovskites Ba2(B,Re)2O6 (B = Fe, Mn, Co and Ni). Phys Status Solidi Curr Top Solid State Phys. 2006;3:3225–3228.
  • Sleight, AW, Weiher, JF. Magnetic and electrical properties of Ba2MReO6 ordered perovskites. J Phys Chem Solids. 1972;33:679.
  • Nishiyama, A, Doi, Y, Hinatsu, Y. Magnetic interactions in rhenium-containing rare earth double perovskites Sr2LnReO6 (Ln=rare earths). J Solid State Chem. 2017;248:134–141.
  • Lopez, CA, Curiale, J, Viola, MDC, et al. Magnetic behavior of Ca2NiWO6 double perovskite. Physica B. 2007;398:256–258.
  • Arejdal, M, Bahmad, L, Abbassi, A, et al. Magnetic properties of the double perovskite Ba2NiUO6. Physica A Stat Mech Appl. 2015;437:375–381.
  • Dimitri Ngantso, G, El Amraoui, Y, Benyoussef, A, et al. Effective field study of ising model on a double perovskite structure. J Magn Magn Mater. 2017;423:337–342.
  • Park, JH, Kwon, SK, Min, BI. Electronic and magnetic structures of Ba2MReO6 (M=Mn, Fe, Co, and Ni). J Magn. 2010;12:64–67.
  • Gauvin-Ndiaye, C, Baker, TE, Karan, P, et al. Electronic and magnetic properties of the candidate magnetocaloric-material double perovskites La 2 MnCoO 6 La 2 MnNiO 6 and La 2 MnFeO 6. Phys Rev B. 2018;98:1–9.
  • Amraoui, S, Feraoun, A, Kerouad, M. Electronic and magnetic properties of the double perovskite Sr2CrWO6: ab-initio and monte carlo studies. J Phys Chem Solids. 2019;131:189.
  • Amraoui, S, Feraoun, A, Kerouad, M. Ab-initio and Monte Carlo studies of the multiferroic double perovskite Ba2FeMnO6 6. Physica A Stat Mech Appl. 2020;550:124198.
  • Blaha, P, Schwarz, K, Madsen, G, et al. WIEN2K, an augmented plane wave local orbitals program for calculating crystal properties. Vienna: Technical University of Vienna; 2001.
  • Perdew, JP, Burke, K, Ernzerhof, M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865.
  • El Rhazouani, O, Benyoussef, A, Naji, S, et al. Magnetic properties of double perovskite Sr2CrReO6: mean field approximation and Monte Carlo simulation. Physica A. 2014;397:31–39.
  • Ritter, C, Ibarra, MR, Morellon, L, et al. Structural and magnetic properties of double perovskites AA'FeMoO6 (AA'= Ba2, BaSr, Sr2 and Ca2). J Phys Condens Matter. 2000;12:8295–8308.
  • Abubrig, F. Mean-Field solution of the mixed spin-2 and spin-5/2 ising ferrimagnetic system with different single-Ion anisotropies. Open J Appl Sci. 2013;3:270–277.
  • Holland, WE, Brown, HA. Application of the Weiss molecular field theory to the B-site spinel. Phys Stat Sol (a). 1972;10:249.
  • Von Ranke, PJ, Alho, BP, Nobrega, EP, et al. Understanding the inverse magnetocaloric effect through a simple theoretical model. Physica B. 2009;404:3045–3047.
  • Von Ranke, PJ, de Olivera, NA, Alho, BP, et al. Magnetocaloric effect in ferromagnetic and ferrimagnetic systems under first and second order phase transition. J Magn Magn Mater. 2010;322:84–87.
  • Wang, W, Bi, J-L, Liu, R-J, et al. Effects of the single-ion anisotropy on magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) cylindrical ising nanowire. Superlattices Microstruct. 2016;98:433–447.
  • Wu, H-J, Wang, W, Li, B-C, et al. Magnetic properties in graphene-like nanoisland bilayer: Monte Carlo study. Physica E Low-dimensional Syst Nanostruct. 2019;112:86–95.
  • Wu, H-J, Wang, W, Wang, F, et al. Monte Carlo study of an Ising nanoisland with bilayer graphene-like structure in a longitudinal magnetic field. J Phys Chem Solids. 2020;136. Article 109174.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.