Publication Cover
Phase Transitions
A Multinational Journal
Volume 94, 2021 - Issue 9
274
Views
9
CrossRef citations to date
0
Altmetric
Articles

Effect of reaction time on the phase transformation and photocatalytic activity under solar irradiation of tungsten oxide nanocuboids prepared via facile hydrothermal method

ORCID Icon, , , &
Pages 651-666 | Received 29 Apr 2021, Accepted 08 Jul 2021, Published online: 19 Jul 2021

References

  • Szilágyi IM, Fórizs B, Rosseler O, et al. WO3 photocatalysts: influence of structure and composition. J Catal. 2012;294:119–127.
  • Tong H, Ouyang S, Bi Y, et al. Nano-photocatalytic materials: possibilities and challenges. Adv Mater. 2012;24:229–251.
  • Younis A, Chu D, Kaneti YV, et al. Tuning the surface oxygen concentration of {111} surrounded ceria nanocrystals for enhanced photocatalytic activities. Nanoscale. 2016;8:378–387.
  • Shen R, Ren D, Ding Y, et al. Nanostructured CdS for efficient photocatalytic H2 evolution: a review. Sci China Mater. 2020;63:2153–2188.
  • Liang Z, Shen R, Ng YH, et al. A review on 2D MoS2 cocatalysts in photocatalytic H2 production. J Mater Sci Technol. 2020;56:89–121.
  • Wageh S, Al-Ghamdi AA, Jafer R, et al. A new heterojunction in photocatalysis: S-scheme heterojunction. Chinese J Catal. 2021;42:667–669.
  • Li X, Xie J, Jiang C, et al. Review on design and evaluation of environmental photocatalysts. Front Environ Sci Eng. 2018;12:01–32.
  • Karimi-Maleh H, Kumar BG, Rajendran S, et al. Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. J Mol Liq. 2020;314:113588.
  • Chuaicham C, Karthikeyan S, Song JT, et al. Importance of ZnTiO3 phase in znti-mixed metal oxide photocatalysts derived from layered double hydroxide. ACS Appl Mater Interfaces. 2020;12:9169–9180.
  • He K, Xie J, Luo X, et al. Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nansheets/WO3 nanorods nanocomposites loaded with Ni(OH)x cocatalysts. Cuihua Xuebao/Chinese J Catal. 2017;38:240–252.
  • Adhikari S, Mandal S, Sarkar D, et al. Kinetics and mechanism of dye adsorption on WO3 nanoparticles. Appl Surf Sci. 2017;420:472–482.
  • Adhikari S, Sarath Chandra K, Kim DH, et al. Understanding the morphological effects of WO3 photocatalysts for the degradation of organic pollutants. Adv Powder Technol. 2018;29:1591–1600.
  • Mardare CC, Hassel AW. Review on the versatility of tungsten oxide coatings. Phys Status Solidi Appl Mater Sci. 2019;216:1–16.
  • Desseigne M, Dirany N, Chevallier V, et al. Shape dependence of photosensitive properties of WO3 oxide for photocatalysis under solar light irradiation. Appl Surf Sci. 2019;483:313–323.
  • Farjood M, Zanjanchi MA. Template-free synthesis of mesoporous tungsten oxide nanostructures and its application in photocatalysis and adsorption reactions. ChemistrySelect. 2019;4:3042–3046.
  • Zhou J, Wang C, Jia C, et al. Intrinsic photocatalysis of morphology and oxygen vacancy-tunable ultrathin WO3 nanosheets. ChemistrySelect. 2020;5:4008–4016.
  • Parthibavarman M, Karthik M, Prabhakaran S. Facile and one step synthesis of WO3 nanorods and nanosheets as an e ffi cient photocatalyst and humidity sensing material. Vacuum. 2018;155:224–232.
  • Wang L, Hu H, Xu J, et al. WO3 nanocubes: hydrothermal synthesis, growth mechanism, and photocatalytic performance. J Mater Res. 2019;34:2955–2963.
  • Rani BJ, Kumar MP, Ravichandran S, et al. WO3 nanocubes for photoelectrochemical water-splitting applications. J Phys Chem Solids. 2019;134:149–156.
  • Hu W-H, Han G-Q, Dong B, et al. Facile synthesis of highly dispersed WO3⋅H2O and WO3 nanoplates for electrocatalytic hydrogen evolution. J Nanomater. 2015;2015:346086.
  • Zhang H, Liu Z, Yang J, et al. Temperature and acidity effects on WO3 nanostructures and gas-sensing properties of WO3nanoplates. Mater Res Bull. 2014;57:260–267.
  • Zhang S, Cao S, Zhang T, et al. Monoclinic oxygen-deficient tungsten oxide nanowires for dynamic and independent control of near-infrared and visible light transmittance. Mater Horizons. 2018;5:291–297.
  • Nguyen VT, Nguyen HS, Pham VT, et al. Tungsten oxide nanoplates: facile synthesis, controllable oxygen deficiency and photocatalytic activity. Commun Phys. 2020;30:319–330.
  • Ram J, Singh RG, Gupta R, et al. Effect of annealing on the surface morphology, optical and and structural properties of nanodimensional tungsten oxide prepared by coprecipitation technique. J Electron Mater. 2019;48:1174–1183.
  • D’Arienzo M, Armelao L, Mari CM, et al. Surface interaction of WO3 nanocrystals with NH3. Role of the exposed crystal surfaces and porous structure in enhancing the electrical response. RSC Adv. 2014;4:11012–11022.
  • Le XV, Duong VT, Anh L, et al. Composition of CNT and WO3 nanoplate: synthesis and NH3 gas sensing characteristics at low temperature. J Met Mater Miner. 2019;29:61–68.
  • Xie YP, Liu G, Yin L, et al. Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion. J Mater Chem. 2012;22:6746–6751.
  • Zhang J, Zhang P, Wang T, et al. Monoclinic WO3 nanomultilayers with preferentially exposed (002) facets for photoelectrochemical water splitting. Nano Energy. 2015;11:189–195.
  • Zheng JY, Haider Z, Van KT, et al. Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications. CrystEngComm. 2015;17:6070–6093.
  • Adhikari S, Sarkar D. Hydrothermal synthesis and electrochromism of WO3 nanocuboids. RSC Adv. 2014;4:20145–20153.
  • Hai G, Huang J, Cao L, et al. Influence of oxygen deficiency on the synthesis of tungsten oxide and the photocatalytic activity for the removal of organic dye. J Alloys Compd. 2017;690:239–248.
  • Filipescu M, Ion V, Colceag D, et al. Growth and characterizations of nanostructured tungsten oxides. Rom Reports Phys. 2012;64:1213–1225.
  • Luu LAT, Pham TP, Han VP, et al. Tailoring the tructure and morphology of WO3 nanostructures by hydrothermal method. Vietnam J Sci Technol. 2018;56:127–134.
  • Zhu W, Li Z, He C, et al. Enhanced photodegradation of sulfamethoxazole by a novel WO3-CNT composite under visible light irradiation. J Alloys Compd. 2018;754:153–162.
  • Nguyen CT, Pham TP, Luu TLA, et al. Constraint effect caused by graphene on in situ grown Gr@WO3-nanobrick hybrid material. Ceram Int. 2020;46:8711–8718.
  • Gotić M, Ivanda M, Popović S, et al. Synthesis of tungsten trioxide hydrates and their structural properties. Mater Sci Eng B Solid-State Mater Adv Technol. 2000;77:193–201.
  • Lee S-H, Cheong HM, Zhang J-G, et al. Electrochromic mechanism in a-WO3−y thin films. Appl Phys Lett. 1999;74:242–244.
  • Jordan V, Javornik U, Plavec J, et al. Self-assembly of multilevel branched rutile-type TiO2 structures via oriented lateral and twin attachment. Sci Rep. 2016;6:24216.
  • Henry M, Jolivet JP, Livage J. Aqueous chemistry of metal cations: hydrolysis, condensation and complexation. In: Reisfeld R, Jørgensen CK, editors. Chemistry, spectroscopy and applications of sol-gel glasses. Berlin, Heidelberg: Springer; 1992. p. 153–206.
  • Supothina S, Seeharaj P, Yoriya S, et al. Synthesis of tungsten oxide nanoparticles by acid precipitation method. Ceram Int. 2007;33:931–936.
  • Elnouby M, Kuruma K, Nakamura E, et al. Facile synthesis of WO3·H2O square nanoplates via a mild aging of ion-exchanged precursor. J Ceram Soc Japan. 2013;121:907–911.
  • López R, Gómez R. Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol. 2012;61:1–7.
  • Safaei E, Mohebbi S. Photocatalytic activity of nanohybrid Co-TCPP@TiO2/WO3 in aerobic oxidation of alcohols under visible light. J Mater Chem A. 2016;4:3933–3946.
  • Nishiyama K, Sasano J, Yokoyama S, et al. Electrochemical preparation of tungsten oxide hydrate films with controlled bandgap energy. Thin Solid Films. 2017;625:29–34.
  • Zheng G, Wang J, Liu H, et al. Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting. Nanoscale. 2019;11:18968–18994.
  • Kim J, Lee CW, Choi W. Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light. Environ Sci Technol. 2010;45:3183–3184.
  • Li X, Yu J, Jaroniec M. Hierarchical photocatalysts. Chem Soc Rev. 2016;45:2603–2636.
  • Wen J, Xie J, Chen X, et al. A review on g-C3N4 -based photocatalysts. Appl Surf Sci. 2017;391:72–123.
  • Luu TLA, Mateus Manuel N, Van Thang P, et al. In situ g-C3N4@ZnO nanocomposite: one-pot hydrothermal synthesis and photocatalytic performance under visible light irradiation. Adv Mater Sci Eng. 2021;2021:6651633.
  • Truong HB, Huy BT, Ray SK, et al. H2O2-assisted photocatalysis for removal of natural organic matter using nanosheet C3N4-WO3 composite under visible light and the hybrid system with ultrafiltration. Chem Eng J. 2020;399:125733.
  • Liu Y, Yang Y, Liu Q, et al. The role of water in reducing WO3 film by hydrogen: controlling the concentration of oxygen vacancies and improving the photoelectrochemical performance. J Colloid Interface Sci. 2018;512:86–95.
  • Li S, Hu S, Jiang W, et al. In situ construction of WO3 nanoparticles decorated Bi2MoO6 microspheres for boosting photocatalytic degradation of refractory pollutants. J Colloid Interface Sci. 2019;556:335–344.
  • Nagaraju P, Alsalme A, Alkathiri AM, et al. Rapid synthesis of WO3/graphene nanocomposite via in-situ microwave method with improved electrochemical properties. J Phys Chem Solids. 2018;120:250–260.
  • Hu H, Deng C, Xu J, et al. Facile synthesis of hierarchical WO3 nanocakes displaying the excellent visible light photocatalytic performance. Mater Lett. 2015;161:17–19.
  • Chen P, Qin M, Chen Z, et al. Solution combustion synthesis of nanosized WOx: characterization, mechanism and excellent photocatalytic properties. RSC Adv. 2016;6:83101–83109.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.