Publication Cover
Phase Transitions
A Multinational Journal
Volume 96, 2023 - Issue 6
147
Views
3
CrossRef citations to date
0
Altmetric
Articles

Temperature dependent phase transition and negative thermal expansion of Hg2Cl2 compound: insights from first-principle DFT and Born-Oppenheimer on the fly molecular dynamics calculations

&
Pages 446-463 | Received 01 Nov 2022, Accepted 24 Apr 2023, Published online: 12 May 2023

References

  • Lifshitz EM, Pitaevskii LP. Statistical physics: theory of the condensed state. Oxford, UK: Elsevier Science; 2013.
  • Hobbs PV. Ice physics. Oxford: OUP; 2010.
  • Marcellini M, Fernandes FM, Dedovets D, et al. Water/ice phase transition: the role of zirconium acetate, a compound with ice-shaping properties. J Chem Phys. 2017;146(14):144504.
  • Kirby RE, Kisker E, King FK, et al. The ferromagnetic to paramagnetic phase transition of Fe studied by x-ray photoelectron spectroscopy. Solid State Commun. 1985;56(5):425–429.
  • Küpper D, Easton S, Bland JAC. Paramagnetic-ferromagnetic phase transition and magnetic properties of ultrathin CoFe∕Cu(110) films. J Appl Phys. 2007;102(8):0083902.
  • Usov V, Murphy S, Shvets IV. Study of ferromagnetic–paramagnetic phase transition in two-dimensional Fe/Mo(110) epitaxial films. J Magn Magn Mater. 2005;290–291:764–767.
  • Binaei Ghotbabadi B, Sheykhi A, Bordbar GH. Holographic paramagnetic-ferromagnetic phase transition with Power-Maxwell electrodynamics. Phys Lett B. 2019;797:134896.
  • Pramanik AK, Banerjee A. Critical behavior at paramagnetic to ferromagnetic phase transition in Pr0.5Sr0.5MnO3: a bulk magnetization study. Phys Rev B. 2009;79(21):214426.
  • Biernacki SW. Ferromagnetic-paramagnetic phase transition in manganite perovskites: thermal hysteresis. Phys Rev B. 2003;68(17):174417.
  • Zu L, Lin S, Liu Y, et al. A first-order antiferromagnetic-paramagnetic transition induced by structural transition in GeNCr3. Appl Phys Lett. 2016;108(3):0031906.
  • He Z, Taniyama T, Itoh M. Antiferromagnetic-paramagnetic transitions in longitudinal and transverse magnetic fields in a SrCo2V2O8 crystal. Phys Rev B. 2006;73(21):212406.
  • Marik M, Jana D, Majumder KC, et al. Dielectric behavior in B1 and B2 phases composed of unsymmetrical bent shaped liquid crystal molecules. Mol Cryst Liq Cryst. 2015;606(1):111–125.
  • Li X, Chen D, Jin M, et al. Pressure-induced phase transitions and superconductivity in a quasi–1-dimensional topological crystalline insulator α-Bi4Br4. PNAS. 2019;116(36):17696–17700.
  • Hoffer JK, Gardner WR, Waterfield CG, et al. Thermodynamic properties of4He. II. The bcc phase and the P-T and V-T phase diagrams below 2 K. J Low Temp Phys. 1976;23(1):63–102.
  • Allen JF, Misener AD. Flow phenomena in liquid helium II. Nature. 1938;142(3597):643–644.
  • Allen JF, Misener AD. Flow of liquid helium II. Nature. 1938;141(3558):75–75.
  • Madsen A, Als-Nielsen J, Hallmann J, et al. Critical behavior of the order-disorder phase transition inβ-brass investigated by x-ray scattering. Phys Rev B. 2016;94(1):014111.
  • Sahoo BD, Joshi KD, Kaushik TC. Structural, elastic, vibrational, thermophysical properties and pressure-induced phase transitions of ThN2, Th2N3, and Th3N4: an ab initio investigation. J Appl Phys. 2020;128(3):0035902.
  • Kurban M, Kürkçü C, Yamçıçıer Ç, et al. A study of structural phase transitions and optoelectronic properties of perovskite-type hydride MgFeH3: ab initio calculations. J Phys: Condens Matter. 2019;31(30):305401.
  • Irshad KA, Anees P, Sahoo S, et al. Pressure induced structural phase transition in rare earth sesquioxide Tm2O3: experiment and ab initio calculations. J Appl Phys. 2018;124(15):155901.
  • Tao Y, Xie S, Lu T, et al. Pressure-induced evolution of structure and electronic property of GeP. J Appl Phys. 2022;131(16):165901.
  • Ghosh S, Chowdhury J. Pressure induced structural phase transitions of technologically significant mercurous chloride at room temperature: an account from first-principle DFT and Born–Oppenheimer molecular dynamics studies. J Appl Phys. 2021;130(22):225103.
  • Zakharov BA, Michalchuk AAL, Morrison CA, et al. Anisotropic lattice softening near the structural phase transition in the thermosalient crystal 1,2,4,5-tetrabromobenzene. Phys Chem Chem Phys. 2018;20(13):8523–8532. doi:10.1039/C7CP08609A
  • Krylov A, Yushina I, Slyusareva E, et al. Structural phase transitions in flexible DUT-8(Ni) under high hydrostatic pressure. Phys Chem Chem Phys. 2022;24(6):3788–3798.
  • Pushkarev GV, Mazurenko VG, Mazurenko VV, et al. Structural phase transitions in VSe2: energetics, electronic structure and magnetism. Phys Chem Chem Phys. 2019;21(40):22647–22653.
  • Chen H-W, Huang C-Y, Shu G-J, et al. Temperature-dependent optical properties of CuFeO2 through the structural phase transition. RSC Adv. 2021;11(63):40173–40181.
  • Duan Y, Li J, Li T, et al. Density dependent structural phase transition for confined copper: origin of the layering. Phys Chem Chem Phys. 2018;20(14):9337–9342.
  • Dudka A, Nesterenko S, Tursina A. Multi-temperature X-ray diffraction study of a reversible structural phase transition in the high-temperature polymorph of Ce2Rh2Ga compound. J Alloys Compd. 2022;890:161759.
  • Yang X, Jiang S-Q, Zhang H-C, et al. Pressure-induced structural phase transition and electrical properties of Cu2S. J Alloys Compd. 2018;766:813–817.
  • Nonato A, Lima PHM, Ferreira WC, et al. Pressure-induced structural phase transition in multiferroic KBiFe2O5. J Alloys Compd. 2019;787:1195–1203.
  • Shrivastava D, Sanyal SP. Structural phase transition, electronic and lattice dynamical properties of half-Heusler compound CaAuBi. J Alloys Compd. 2018;745:240–246.
  • Nag A, Kumari A, Kumar J. Pressure dependent structural phase transition and observation of Dirac-like dispersions in CaTe and SrTe. J Solid State Chem. 2021;304:122600.
  • Peng Y, Wei X, Jin C, et al. Strain induced structural phase transition in TM6X6 (TM = Mo, W; X = S, Se, Te) nanowires (TM = Mo, W; X = S, Se, Te) nanowires. J Solid State Chem. 2021;300:122194.
  • Sharma S, Nandan R, Shah J, et al. Phase evolution and enhanced electrical properties in Ba0.85Ca0.15Zr0.10Ti0.90O3 lead-free ceramics prepared at different sintering temperatures. Phase Transit. 2022;95(8–9):609–625.
  • Kapustianyk V, Semak S, Chornii Y, et al. Manifestation of ferroelastoelectric phase transition in temperature changes of the optical absorption edge in (NH4)2CuCl4·2H2O crystal. Phase Transit. 2022;95(8-9):626–633.
  • de Armas Figueroa Y, Portelles J, López-Noda R, et al. Study of a polymorphic phase transition in KNNLiTaLa0.01 by Raman spectroscopy. Phase Transit. 2022;95(6):466–473.
  • Bejaoui Ouni I, Aroui H, Fontana MD. Sub-THz Raman response and soft phonon in tetragonal BaTiO3. Phase Transit. 2022;95(11):749–757.
  • Chen RH, Chen SC, Chen TM. High-temperature structural phase transition in Na3H(SO4)2crystal. Phase Transit. 1995;53(1):15–22.
  • Ghosh S, Sarkar S, Chowdhury J. Structural and electronic properties of wide band gap charge transfer insulator Hg2Cl2: insights from the first-principle calculations. Mater Chem Phys. 2022;276:125379.
  • Henningsen T, Singh NB. Crystal characterization by use of birefringence interferometry. J Cryst Growth. 1989;96(1):114–118.
  • Ewing WW. The preparation of electrolytic mercurous chloride in saturated potassium chloride for use in the calomel electrode. J Am Chem Soc. 1925;47(2):301–305.
  • Crippa M, Legnaioli S, Kimbriel C, et al. New evidence for the intentional use of calomel as a white pigment]. J Raman Spectrosc. 2021;52(1):15–22. doi:10.1002/jrs.5876
  • Pierson A, Philippe C. Acousto-optic interaction model with mercury halides (Hg2Cl2 and Hg2Br2) as AOTF cristals. Vol. 11180. SPIE; 2019. International Conference on Space Optics –ICSO 2018.
  • Ghosh S, Chowdhury J. Pressure induced modulations in the optoelectronic properties of Hg2Cl2 compound: insights from the first-principle calculations. Mater Sci Eng B. 2022;284:115903.
  • Amarasinghe PM, Kim J-S, Trivedi S, et al. Negative thermal expansion of mercurous halides. J Electron Mater. 2019;48(11):7063–7067.
  • Venudhar YC, Iyengar L, Rao KVK. Unusual thermal behaviour of mercurous chloride. Cryst Res Technol. 1986;21(1):151–156. doi:10.1002/crat.2170210136
  • Roginskii EM, Krylov AS, Markov YF, et al. Lattice dynamics and baric behavior of phonons in Hg2Cl2 crystals at high hydrostatic pressures. Bull Russ Acad Sci Phys. 2016;80(9):1033–1037.
  • Kvasov AA, Markov YF, Roginskii EM, et al. Phonon dispersion and pressure behavior of Hg2Cl2 crystals. Ferroelectrics. 2010;397(1):81–89.
  • Midorikawa M, Ishibashi Y, Nakashima S-i, et al. Effect of pressure on phase transition in Hg2Cl2 crystals. J Phys Soc Jpn. 1980;49(2):554–556.
  • Dultz W, Rehaber E. A pressure-dependent optical soft mode in calomel (Hg2Cl2). J Phys C: Solid State Phys. 1979;12(4):L137–L139.
  • Boiko ME, Sharkov MD, Boiko AM, et al. Study of the phase transition in Hg2Cl2 crystals using anomalous X-ray transmission. Crystallogr Rep. 2018;63(2):196–199.
  • Dobrzhanskii GF, Kaplyanskii AA, Limonov MF, et al. A ferroelastic phase transition in Hg2 (ClxBr1−x)2 crystals. Ferroelectrics. 1983;48(1):69–80.
  • Benoit JP, An CX, Luspin Y, et al. Study of inelastic neutron scattering and by the Raman effect, of the soft mode in the prototype phase of Hg2Cl2. J Phys C: Solid State Phys. 1978;11(17):L721–L723.
  • Barta C, Kaplyanskiǐ A, Kulakov V, et al. Soft mode at the boundary of the Brillouin zone and nature of the phase transition in monovalent mercury-halide crystals. JETP Lett. 1974;21:121.
  • Kaplyanskii AA. Raman spectra and structural phase transitions in improper ferroelastics Hg2Cl2 and Hg2Br2. In: Bendow B, Birman JL, Agranovich VM, editor. Theory of light scattering in condensed matter. Boston, MA: Springer US; 1976. p. 31–52.
  • Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys. 2003;118(18):8207–8215.
  • Giannozzi P, Baseggio O, Bonfà P, et al. Quantum ESPRESSO toward the exascale. J Chem Phys. 2020;152(15):154105.
  • Giannozzi P, Andreussi O, Brumme T, et al. Advanced capabilities for materials modelling with quantum ESPRESSO. J Phys: Condens Matter. 2017;29(46):465901.
  • Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys: Condens Matter. 2009;21(39):395502.
  • Havighurst RJ. Parameters in crystal structure: the mercurous halides. J Am Chem Soc. 1926;48(8):2113–2125.
  • Broyden CG. The convergence of a class of double-rank minimization algorithms 1: general considerations. IMA J Appl Math. 1970;6(1):76–90.
  • Fletcher R. A new approach to variable metric algorithms. Comput J. 1970;13(3):317–322.
  • Goldfarb D. A family of variable-metric methods derived by variational means. Math Comp. 1970;24(109):23–26.
  • Shanno DF. Conditioning of quasi-newton methods for function minimization. Math Comp. 1970;24(111):647–656.
  • Dal Corso A. Pseudopotentials periodic table: from H to Pu. Comput Mater Sci. 2014;95:337–350.
  • Murnaghan FD. The compressibility of media under extreme pressures. PNAS. 1944;30(9):244–247.
  • Birch F. Finite elastic strain of cubic crystals. Phys Rev. 1947;71(11):809–824.
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31(3):1695–1697.
  • Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. 1984;52(2):255–268.
  • Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81(1):511–519.
  • Kokalj A. XCrySDen – a new program for displaying crystalline structures and electron densities. J Mol Graph Model. 1999;17(3):176–179.
  • Momma K, Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Cryst. 2008;41(3):653–658.
  • Togo A, Chaput L, Tanaka I. Distributions of phonon lifetimes in Brillouin zones. Phys Rev B. 2015;91(9):094306.
  • Nicholas J, Calos CLK. The structure of calomel, Hg2Cl2, derived from neutron powder data. Z Krist Cryst Mater. 1989;187(3–4):305–307.
  • Dorm E. Intermetallic distances in mercury(I) halides Hg2F2, Hg2Cl2, and Hg2Br2. J Chem Soc D. 1971;9:466–467.
  • Pelant I, Popova MN, Hála J, et al. Two-photon absorption and energy band structure of orthorhombic Hg2Cl2 crystals. Czech J Phys. 1987;37(10):1183–1197.
  • Grzechnik A, Friese K, Dmitriev V, et al. Pressure-induced tricritical phase transition from the scheelite structure to the fergusonite structure in LiLuF4. J Phys: Condens Matter. 2005;17(4):763–770.
  • Wadhawan VK. Ferroelasticity. Bull Mater Sci. 1984;6(4):733–753.
  • Salje E, Bismayer U, Jansen M. Temperature evolution of the ferroelastic order parameter of As2O5 as determined from optical birefringence. J Phys C: Solid State Phys. 1987;20(24):3613.
  • Petrova AV, Nedopekin OV, Minisini B, et al. Pressure-induced ferroelastic phase transition in LuLiF4 compound. Phase Transit. 2015;88(5):534–539.
  • Tsunekawa S, Kamiyama T, Sasaki K, et al. Precise structure analysis by neutron diffraction for RNbO4 and distortion of NbO4 tetrahedra. Acta Cryst. 1993;49(4):595–600.
  • Phillips R. Crystals, defects and microstructures: modeling across scales. Cambridge: Cambridge University Press; 2001.
  • Grabowski B, Söderlind P, Hickel T, et al. Temperature-driven phase transitions from first principles including all relevant excitations: the fcc-to-bcc transition in Ca. Phys Rev B. 2011;84(21):214107.
  • Grabowski B, Hickel T, Neugebauer J. Formation energies of point defects at finite temperatures]. Phys Status Solidi B. 2011;248(6):1295–1308. doi:10.1002/pssb.201046302
  • Lebedev AI. Ab initio calculations of phonon spectra in ATiO3 perovskite crystals (A = Ca, Sr, Ba, Ra, Cd, Zn, Mg, Ge, Sn, Pb). Phys Solid State. 2009;51(2):362–372.
  • Parlinski K, Kawazoe Y, Waseda Y. Ab initio studies of phonons in CaTiO3. J Chem Phys. 2001;114(5):2395–2400.
  • Parlinski K, Kawazoe Y. Ab initio study of phonons and structural stabilities of the perovskite-type. Eur Phys J B. 2000;16(1):49–58.
  • Parlinski K, Li ZQ, Kawazoe Y. Ab initio calculations of phonons in LiNbO3. Phys Rev B. 2000;61(1):272–278.
  • Schneider T, Stoll E. Molecular-dynamics study of structural-phase transitions. I. One-component displacement models. Phys Rev B. 1976;13(3):1216–1237.
  • Wdowik UD, Parlinski K, Rols S, et al. Soft-phonon mediated structural phase transition in GeTe. Phys Rev B. 2014;89(22):224306.
  • Grüneisen E. Theorie des festen Zustandes einatomiger Elemente]. Ann Phys. 1912;344(12):257–306. doi:10.1002/andp.19123441202
  • Wei L, Wang XP, Liu B, et al. The role of acoustic phonon anharmonicity in determining thermal conductivity of CdSiP2and AgGaS2: first principles calculations. AIP Adv. 2015;5(12):127236.
  • Gupta MK, Mittal R, Chaplot SL. Negative thermal expansion in cubic ZrW2O8: role of phonons in the entire Brillouin zone from ab initio calculations. Phys Rev B. 2013;88(1):014303.
  • Takenaka K. Progress of research in negative thermal expansion materials: paradigm shift in the control of. thermal expansion [review]. Front Chem. 2018;6:7–19.
  • Mohn P. A century of zero expansion. Nature. 1999;400(6739):18–19.
  • Chen J, Hu L, Deng J, et al. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. Chem Soc Rev. 2015;44(11):3522–3567.
  • Sleight A. Zero-expansion plan. Nature. 2003;425(6959):674–676.
  • Liu J, Maynard-Casely HE, Brand HEA, et al. Sc1.5Al0.5W3O12 exhibits zero thermal expansion between 4 and 1400 K. Chem Mater. 2021;33(10):3823–3831.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.