Publication Cover
Phase Transitions
A Multinational Journal
Volume 97, 2024 - Issue 4-5
64
Views
0
CrossRef citations to date
0
Altmetric
Articles

Metallurgical and interfacial co-relation of HA-ZnO-Fe3O4 composite for implant application with properties: experimental interaction study with ANOVA and ANCOVA model

, &
Pages 322-336 | Received 06 Mar 2023, Accepted 06 Jan 2024, Published online: 30 Jan 2024

References

  • Baji A, Wong S, Srivatsan TS, et al. Processing methodologies for polycaprolactone-hydroxyapatite composites: a review. Mater Manufact Process. 2006;21:211–218. doi:10.1081/AMP-200068681
  • Festas A, Ramos A, Davim J. Medical devices biomaterials –a review. Proc Inst Mech Eng Part L: J Mater: Des Appl. 2020;234(1):218–228. doi:10.1177/1464420719882458
  • Pal A, Metya AK, Chowdhury AR, et al. Structural and mechanical behavior of mechanochemically synthesized nanocrystalline hydroxyapatite from mercenaria clam shells. Trans Ind Ceram Soc. 2020;79. doi:10.1080/0371750X.2020.1792806
  • Ghedjemis A A, Benouadah A. A comparative study on physicochemical properties of hydroxyapatite powder prepared from bovine and dromedary bone. J Aust Ceram Soc. 2022;58. doi:10.1007/s41779-022-00721-6
  • Peterson JR, Chen F, Nwankwo E, et al. The use of bone grafts, bone graft substitutes, and orthobiologics for osseous healing in foot and ankle surgery. Foot Ankle Orthopaed. 2019;4(3). doi:10.1177/2473011419849019
  • Anjaneyulu U, Pattanayak DK, Vijayalakshmi U. Snail shell derived natural hydroxyapatite: effects on NIH-3T3 cells for orthopedic applications. Mater Manuf Processes. 2016;31. doi:10.1080/10426914.2015.1070415
  • Akpan ES, Dauda M, Kuburi LS, et al. A facile synthesis method and fracture toughness evaluation of catfish bones-derived hydroxyapatite. MRS Adv. 2020;5. doi:10.1557/adv.2020.172
  • Abraham AM, Venkatesan S. A review on application of biomaterials for medical and dental implants. Proc Inst Mech Eng Part L: J Mater: Des Appl. 2023;237(2):249–273. doi:10.1177/14644207221121981
  • Mohammadi M, Tulliani JM, Montanaro L, et al. Gelcasting and sintering of hydroxyapatite materials: effect of particle size and Ca/P ratio on microstructural, mechanical and biological properties. J Eur Ceram Soc. 2021;41. doi:10.1016/j.jeurceramsoc.2021.07.025
  • Yeasmin Z, Alim A, Ahmed S, et al. Synthesis, characterization and efficiency of HAp-TiO2-ZnO composite as a promising photocatalytic material. Trans Ind Ceram Soc. 2018;77. doi:10.1080/0371750X.2018.1512380
  • Sikder P, Koju N, Lin B, et al. Conventionally sintered hydroxyapatite–barium titanate piezo-biocomposites. Trans Indian Inst Met. 2019;72. doi:10.1007/s12666-018-1533-3
  • Castañeda VJ, Landauro CV, Quispe MJ, et al. Improvement of mechanical properties of hydroxyapatite composites reinforced with i-Al64Cu23Fe13 quasicrystal. J Compos Mater. 2021;55(9):1209–1216. doi:10.1177/0021998320964553
  • Irfan M, Sultana SN, Venkateswarlu B, et al. Zinc-substituted hydroxyapatite: synthesis, structural analysis, and antimicrobial behavior. Trans Indian Inst Met. 2021;74. doi:10.1007/s12666-021-02290-x
  • Mahanty A, Shikha D. Changes in the morphology, mechanical strength and biocompatibility of polymer and metal/polymer fabricated hydroxyapatite for orthopaedic implants: a review. J Polym Eng. 2022;42. doi:10.1515/polyeng-2021-0171
  • Lang SB. Review of ferroelectric hydroxyapatite and its application to biomedicine. Phase Trans. 2016;89(7-8):678–694. doi:10.1080/01411594.2016.1182166
  • Nordin JA, Prajitno DH, Saidin S, et al. Structure–property relationships of iron–hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method. Mater Sci Eng C. 2015;51. doi:10.1016/j.msec.2015.03.019
  • Ito A, Otsuka M, et al. Zinc containing tricalcium phosphate and related materials for promoting bone formation. Curr Appl Phys. 2005;5:4026.
  • Vasic MV, Antic B, Boskovic M, et al. Hydroxyapatite/iron oxide nanocomposite prepared by high energy ball milling. Process Appl Ceram. 2019;13; doi:10.2298/PAC1902210V
  • Safari Gezaz M, Mohammadi Aref S, Khatamian M. Investigation of structural properties of hydroxyapatite/ zinc oxide nanocomposites; an alternative candidate for replacement in recovery of bones in load-tolerating areas. Mater Chem Phys. 2019;226:169–176. doi:10.1016/j.matchemphys.2019.01.005
  • Singh JP, Pandey PM. Fabrication and characterization of open cell porous regular interconnected metallic structure with solid core. Proc Inst Mech Eng Part B: J Eng Manuf. 2018;232(2):305–316. doi:10.1177/0954405416641324
  • Pinar AM. Optimization of process parameters with minimum surface roughness in the pocket machining of AA5083 aluminum alloy via taguchi method. Arab J Sci Eng. 2013;38. doi:10.1007/s13369-012-0372-5
  • Montgomery DC. Design and analysis of experiments. New York: Arizona State University, Eighth Edition, John Wiley & Sons; 2017.
  • Venkatraman P, Bohmann N, Gadalla D, et al. Microstructured poly(ether-ether-ketone)-hydroxyapatite composites for bone replacements. J Compos Mater. 2021;55(16):2263–2271. doi:10.1177/0021998320983870
  • Agarwal M, Singh MK, Srivastava R, et al. Microstructural measurement and artificial neural network analysis for adhesion of tribolayer during sliding wear of powder-chip reinforcement based composites. Measurement. 2021;168. doi:10.1016/j.measurement.2020.108417
  • Gupta R, Singh VP. Determination of mechanical properties and physical characterization of HA-ZnO- Fe3O4 composites for implant applications. J Mater Eng Perform. 2021;30. doi:10.1007/s11665-020-05385-6
  • ASTM Standard B962-13. Standard test methods for density of compacted or sintered powder metallurgy (PM) products using archimedes’ principle. ASTM International: West Conshohocken, PA, USA; 2013.
  • Khan AH, Shah SAA, Umar F, et al. Investigating the microstructural and mechanical properties of novel ternary reinforced AA7075 hybrid metal matrix composite. Materials. 2022;15:5303. doi:10.3390/ma15155303
  • Mohd Shaikh BN, Arif S, Aziz T, et al. Microstructural, mechanical and tribological behaviour of powder metallurgy processed SiC and RHA reinforced Al-based composites. Surf Interf. 2019;15:166–179. doi:.
  • Kumar CS, Dhanaraj K, Vimalathithan RM, et al. Hydroxyapatite for bone related applications derived from sea shell waste by simple precipitation method. J Asian Cer Soc. 2020;8. doi:10.1080/21870764.2020.1749373
  • Basu B, Naresh S, Kahraman K, et al. Sintering, microstructure, mechanical, and antimicrobial properties of HAp-ZnO biocomposites. J Biomed Mater Res B: Appl Biomater. 2010;95B. doi:10.1002/jbm.b.31734
  • Pal K, Pal S. Development of porous hydroxyapatite scaffolds. Mater Manuf Process. 2006;21. doi:10.1080/10426910500464826
  • Pathak DK, Pandey PM. An experimental investigation of the fabrication of biodegradable zinc–hydroxyapatite composite material using microwave sintering. Proc Inst Mech Eng Part C: J Mech Eng Sci. 2020;234(14):2863–2880. doi:10.1177/0954406220910445
  • Hing KA, Best SM, Bonfield W. Characterization of porous hydroxyapatite. J Mater Sci Mater Med. 1999;10. doi:10.1023/A:1008929305897
  • Hannora AE, Ataya S. Structure and compression strength of hydroxyapatite/titania nanocomposites formed by high energy ball milling. J Alloys Compd. 2016;658. doi:10.1016/j.jallcom.2015.10.240
  • Kumaresan T, Gandhinathan R, Ramu M, et al. Design, analysis and fabrication of polyamide/ hydroxyapatite porous structured scaffold using selective laser sintering method for bio-medical applications. J Mech Sci Technol. 2016;30. doi:10.1007/s12206-016-1049-x
  • Gupta R, Agarwal M, Singh VP. HA-ZnO-Fe3O4 composite manufactured by wet powder metallurgy process for implant applications. Compos Theory Practice. 2022;22:40–43.
  • Tsipas S, Goodwin P, Shane HB, et al. Effect of high energy ball milling on titanium-hydroxyapatite powders. Powder Metall. 2003;46. doi:10.1179/003258903225010523
  • Shivaram MJ, Arya SB, Nayak J, et al. Development and characterization of biomedical porous Ti–20Nb–5Ag alloy: microstructure, mechanical properties, surface bioactivity and cell viability studies. Met Mater Int. 2022;28. doi:10.1007/s12540-020-00915-2
  • Wang L, Weng L, Wang L, et al. Hydrothermal synthesis of hydroxyapatite nanoparticles with various counterions as templates. J Ceram Soc Japan. 2010;118; doi:10.2109/jcersj2.118.1195
  • Albayrak O, Ipekoglu M, Mahmutyazicioglu N, et al. Preparation and characterization of porous hydroxyapatite pellets: effects of calcination and sintering on the porous structure and mechanical properties. Proc Inst Mech Eng Part L: J Mater: Des Appl. 2016;230(6):985–993. doi:10.1177/1464420715591859
  • Wu J, Ruan C, Ma Y, et al. Vital role of hydroxyapatite particle shape in regulating the porosity and mechanical properties of the sintered scaffolds. J Mater Sci Technol. 2018;34. doi:10.1016/j.jmst.2017.01.008
  • Iqbal UM, Kumar VSS, Gopalakannan S. Application of response surface methodology in optimizing the process parameters of twist extrusion process for AA6061-T6 aluminum alloy. Measurement. 2016;94. doi:10.1016/j.measurement.2016.07.085
  • Mathina M, Shinyjoy E, Ramya S, et al. Multifunctional crab shell derived hydroxyapatite/metal oxide/polyhydroxybutyrate composite coating on 316L SS for biomedical applications. Mater Lett. 2022;313. doi:10.1016/j.matlet.2022.131701
  • Rincón-López JA, Hermann-Muñoz JA, Fernández-Benavides DA, et al. Isothermal phase transformations of bovine-derived hydroxyapatite/bioactive glass: a study by design of experiments. J Eur Ceram Soc. 2019;39. doi:10.1016/j.jeurceramsoc.2018.11.021
  • Ofudje EA, Adeogun AI, Idowu MA, et al. Synthesis and characterization of Zn-doped hydroxyapatite: scaffold application, antibacterial and bioactivity studies. Heliyon. 2019;5. doi:10.1016/j.heliyon.2019.e01716
  • Mirsalehi SA, Sattari M, Khavandi A, et al. Tensile and biocompatibility properties of synthesized nano-hydroxyapatite reinforced ultrahigh molecular weight polyethylene nanocomposite. J Compos Mater. 2016;50(13):1725–1737. doi:10.1177/0021998315595711
  • Manohar G, Pandey KM, Maity SR. Effect of microwave sintering on the microstructure and mechanical properties of AA7075/B4C/ZrC hybrid nano composite fabricated by powder metallurgy techniques. Ceram Int. 2021: 56. doi:10.1016/j.ceramint.2021.08.156
  • Mohd Shaikh BN, Aziz T, Arif S, et al. Effect of sintering techniques on microstructural, mechanical and tribological properties of Al-SiC composites. Surf Interf. 2020;20:100598. doi:10.1016/j.surfin.2020.100598
  • Salur E, Acarer M, Savkliyildiz I. Improving mechanical properties of nano-sized TiC particle reinforced AA7075 Al alloy composites produced by ball milling and hot pressing. Mater Today Commun. 2021;27:102202. doi:10.1016/j.mtcomm.2021.102202

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.