Publication Cover
Phase Transitions
A Multinational Journal
Volume 97, 2024 - Issue 4-5
124
Views
1
CrossRef citations to date
0
Altmetric
Articles

Rietveld analysis and dielectric spectroscopy of high conductivity and low dielectric loss Co Zn La ferrite

, , , , , & show all
Pages 260-275 | Received 06 Feb 2023, Accepted 24 Jan 2024, Published online: 02 Mar 2024

References

  • Jahan N, Khan MNI, Hasan MR, et al. Correlation among the structural, electric and magnetic properties of Al3+ substituted Ni-Zn-Co ferrites. RSC Advance. 2022;12:15167–15179.
  • Henaish AMA, Hemeda OM, Alqarni A, et al. The role of flash auto-combustion method and Mn doping in improving dielectric and magnetic properties of CoFe2O4. Appl Phys A. 2020;126:1–8. doi:10.1007/s00339-020-04030-2
  • Channa N, Abbas N, Khan JK, et al. Fabrication of cobalt ferrite nanoparticles with a facile approach: variations in structural, dielectric and morphological properties by influence of annealing temperature. Int J Nanoelectron Mater. 2022;15:37–52.
  • Algude SG, Patange SM, Shirsath SE, et al. Elastic behaviour of Cr3+ substituted Co-Zn ferrites. J Magn Magn Mater. 2014;350:39–41. doi:10.1016/j.jmmm.2013.09.021
  • Pawar RA, Patange SM, Tamboli QY, et al. Spectroscopic, elastic and dielectric properties of Ho3+ substituted Co-Zn ferrites synthesized by sol-gel method. Ceram Int. 2016;42:16096–16102. doi:10.1016/j.ceramint.2016.07.122
  • Pawar RA, Patange SM, Shirsath SE. Spin glass behavior and enhanced but frustrated magnetization in Ho3+ substituted Co-Zn ferrite interacting nanoparticles. RSC Adv. 2016;6:76590–76599. doi:10.1039/C6RA12541G
  • Gilani ZA, Sciences M, Farooq A, et al. Synthesis and characterization of lanthanum doped Co-Zn spinel ferrites nanoparticles by Sol-Gel auto combustion method. 2020;1:1–11.
  • Hemeda OM, Tawfik A, Mostafa M, et al. Structural and magnetic properties of nano ferrite for magnetoelectric applications. J Phys Conf Ser. 2019: 1253.
  • Bhuvaneshwari V, Lenin N, Shiva C, et al. Influence of gadolinium doped in nickel nanoferrites on structural, optical, electrical, and magnetic properties. Mater. Sci Eng B. 2023;288:116184. doi:10.1016/j.mseb.2022.116184
  • Gupta M, Das A, Das D, et al. Chemical synthesis of rare earth (La, Gd) doped cobalt ferrite and a comparative analysis of their magnetic properties. J Nanosci Nanotechnol. 2020;20:5239–5245.
  • Johan A, Adi WA, Arsyad FS, et al. Effect of lanthanum substituted cofe2-xlaxo4 on change of structure parameter and phase formation. Key Eng Mater. 2020;855:70–77.
  • Maensiri S, Masingboon C, Boonchom B, et al. A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scr Mater. 2007;56:797–800.
  • Mostafa NI, Altarawneh AM, Abosheiasha HF, et al. Physics synthesis, characterization, and electrical properties of La-substituted Ni- Co-Sr ferrites with potential applications. Delta J Sci. 2023;47.
  • Auwal IA, Ünal B, Güngüneş H, et al. Dielectric properties, cationic distribution calculation and hyperfine interactions of La3+ and Bi3+ doped strontium hexaferrites. Ceram Int. 2016;42:9100–9115.
  • Shirsath SE, Wang D, Jadhav SS, et al. Ferrites obtained by sol-gel method. handbook of Sol-Gel science and technology: processing. Charact. Appl. 2018.
  • Altarawneh AM, Arrasheed EA, Ajlouni AW, et al. Correlation between structural, cation distribution with dielectric spectra and magnetic properties for Co–Zn ferrite doped with La3+ ions. Ceram Int. 2023;49:14215–14224. doi:10.1016/j.ceramint.2023.01.008
  • Sarmah S, Patra KP, Maji PK, et al. A comparative study on the structural, magnetic and dielectric properties of magnesium substituted cobalt ferrites. Ceram Int. 2022;49:1444–1463. doi:10.1016/j.ceramint.2022.09.126
  • Basfer NM, Al-Harbi N. Structural, optical and photocatalytic activity of Ce3+ doped Co–Mg nanoparticles for wastewater treatment applications. J King Saud Univ. - Sci. 2022;35:102436. doi:10.1016/j.jksus.2022.102436
  • Dasan YK, Guan BH, Zahari MH, et al. Influence of La3+ substitution on structure, morphology and magnetic properties of nanocrystalline Ni-Zn ferrite. PLoS One. 2017;12:1–14.
  • Arrasheed EA, Alibwaini YA, Meaz TM, et al. Structural, cation distribution, thermal properties, and electrical resistivity of nano NiAlxFe2-xO4 synthesized by flash auto combustion method. J Mol Struct. 2021;1245:131273.
  • Kore EK, Shahane GS, Mulik RN. Structural and magnetic properties of Co0.9Zn0.1Fe2O4 ferrite nanoparticles synthesized by chemical Co-precipitation method. Macromol Symp. 2021;400:2–5.
  • Mariosi FR, Venturini J, da Cas Viegas A, et al. Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications. Ceram Int. 2020;46:2772–2779. doi:10.1016/j.ceramint.2019.09.266
  • Hemeda O, El-Shahawy M, Khedr H. Structural and magnetic properties of nano Cu-Zn-Zr ferrite for magnetic temperature transducer (MTT). Phys. Sci. Int. J. 2017;14:1–15.
  • Rehman AU, Morley NA, Amin N, et al. Controllable synthesis of La3+ doped Zn0.5Co0.25Cu0.25Fe2−xLaxO4 (x = 0.0, 0.0125, 0.025, 0.0375, 0.05) nano-ferrites by sol-gel auto-combustion route. Ceram Int. 2020;46:29297–29308.
  • Benrabaa R, Trentesaux M, Roussel P, et al. NiAlxFe2-xO4mixed oxide catalysts for methane reforming with CO2: effect of Al vs Fe contents and precursor salts. J CO2 Util. 2023;67.
  • Ikram S, Arshad MI, Mahmood K, et al. Structural, magnetic and dielectric study of La3+ substituted Cu0.8Cd0.2Fe2O4 ferrite nanoparticles synthesized by the co-precipitation method. J Alloys Compd. 2018;769:1019–1025. doi:10.1016/j.jallcom.2018.08.065
  • Shedam RM, Bagwan AM, Mathad SN, et al. Nd3+ added Mg– Cd ferrite material study the thick film gas sensing properties. Mater Chem Phys. 2023;293:1–9.
  • Sivakumar P, Ramesh R, Ramanand A, et al. Synthesis and characterization of nickel ferrite magnetic nanoparticles. Mater Res Bull. 2011;46:2208–2211.
  • Hezam FA, Khalifa NO, Nur O, et al. Synthesis and magnetic properties of Ni0.5MgxZn0.5-xFe2O4 nanocrystalline spinel ferrites. Mater Chem Phys. 2021;257:123770. doi:10.1016/j.matchemphys.2020.123770
  • Kumar H, Singh JP, Srivastava RC, et al. FTIR and electrical study of dysprosium doped cobalt ferrite nanoparticles. J. Nanosci. 2014;2014:1–10.
  • Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. In: Griffiths PR, editor. Handbook of vibrational spectroscopy. Chichester: John Wiley & Sons, Ltd; 2006.
  • Park BJ, Fang FF, Choi HJ. Magnetorheology: materials and application. Soft Matter. 2010;6:5246–5253.
  • Aslam A, Morley NA, Amin N, et al. Study of structural, optical and electrical properties of La3+doped Mg0.25 Ni0.15 Cu0.25 Co0.35 Fe2-x Lax O4 spinel ferrites. Phys B. 2021;602:412565. doi:10.1016/j.physb.2020.412565
  • Han J, Jun BM, Heo J, et al. Heterogeneous sonocatalytic degradation of an anionic dye in aqueous solution using a magnetic lanthanum dioxide carbonate-doped zinc ferrite-reduced graphene oxide nanostructure. Ecotoxicol Environ Saf. 2019;182:109396. doi:10.1016/j.ecoenv.2019.109396
  • Aslam A, Rehman AU, Amin N, et al. Lanthanum doped Zn0.5Co0.5LaxFe2−xO4 spinel ferrites synthesized via co-precipitation route to evaluate structural, vibrational, electrical, optical, dielectric, and thermoelectric properties. J Phys Chem Solids. 2021;154:110080. doi:10.1016/j.jpcs.2021.110080
  • Nayak H. Effect of catalytic activities of mixed nano ferrites of zinc and copper on decomposition kinetics of lanthanum oxalate hydrate. Trans. Nonferrous Metals Soc. China. 2016;26:767–774.
  • Srinivasamurthy KM, El-Denglawey A, Manjunatha K, et al. Observation of dielectric dispersion and relaxation behavior in Ni2+-substituted cobalt ferrite nanoparticles. J Mater Chem C. 2022;10:3418–3428.
  • Hemeda OM, Mostafa NY, Abd Elkader OH. Electrical and morphological properties of magnetocaloric nano ZnNi ferrite. J Magn Magn Mater. 2015;394:96–104.
  • Gaba S, Kumar A, Rana PS, et al. Influence of La3+ ion doping on physical properties of magnesium nanoferrites for microwave absorption application. J Magn Magn Mater. 2018;460:69–77. doi:10.1016/j.jmmm.2018.03.035
  • El-Sbakhy FS, Abdel-Ati MI, Abdelghany AM, et al. Structural, spectral, Rietveld refinement and cation distribution of nanoferrite NiFe2O4 doped with Mn. Eur Phys J Plus. 2021;136; doi:10.1140/epjp/s13360-021-01518-5
  • Hemeda OM, Tawfik A, Henaish AMA, et al. Spectral, electrical, thermoelectrical and dielectric properties of (Zn,Zr) Co-doped CuFe2O4. J Supercond Novel Magn. 2018;31:3733–3752.
  • Sumalatha E, Hari kumar N, Edukondalu A, et al. Effect of La3+ ion doped Co-Zn nano ferrites: structural, optical, electrical and magnetic properties. Inorg Chem Commun. 2022;146:110200. doi:10.1016/j.inoche.2022.110200
  • Humbe AV, Kounsalye JS, Somvanshi SB, et al. Cation distribution, magnetic and hyperfine interaction studies of Ni-Zn spinel ferrites: role of Jahn Teller ion (Cu2+) substitution. Mater Adv. 2020;1:880–890.
  • Kumar H, Srivastava RC, Negi P, et al. Dielectric behaviour Of cobalt ferrite nanoparticles Hemaunt. Int J Electr Electron Eng. 2013;2:59–66.
  • Aziz C, Azhdar B. Synthesis of dysprosium doped cobalt ferrites nanoparticles by solgel auto-combustion method and influence of grinding techniques on structural, morphological, and magnetic properties. J Magn Magn Mater. 2022;542:168577. doi:10.1016/j.jmmm.2021.168577
  • Zakir R, Iqbal SS, Rehman AU, et al. Spectral, electrical, and dielectric characterization of Ce-doped Co-Mg-Cd spinel nano-ferrites synthesized by the sol-gel auto combustion method. Ceram Int. 2021;47:28575–28583. doi:10.1016/j.ceramint.2021.07.016
  • Jadhav SS, Bagade AA, Shinde TJ, et al. The structural, electric and dielectric properties of Ni 0 . 7 Cd 0 . 3 Nd x Fe 2-x O 4 (0 ≤ x ≤ 0 . 03) ferrite prepared via oxalate Co-precipitation route. Iran J Mater Sci Eng. 2022;19:1–10.
  • Li Y, Zheng T, Wu J. Multiple property enhancement in bismuth ferrite-based ferroelectrics by balancing nanodomain and relaxor state. J Am Ceram Soc. 2022;105:1241–1252.
  • Slimani Y, Shirsath SE, Hannachi E, et al. (Batio3)1-x + (Co0.5Ni0.5Nb0.06Fe1.94O4)x nanocomposites: structure, morphology, magnetic and dielectric properties. J Am Ceram Soc. 2021;104:5648–5658.
  • Klinger MI. Two-phase polaron model of conduction in magnetite-like solids. J Phys C Solid State Phys. 1975;8:3595–3607.
  • Parajuli D, Vagolu VK, Chandramoli K, et al. Electrical properties of cobalt substituted NZCF and ZNCF nanoparticles prepared by the soft synthesis method nanoparticles prepared by the soft synthesis method. J Nepal Phys Soc. 2022;8(3):45–52.
  • Kumar P, Sharma SK, Knobel M, et al. Effect of La3+ doping on the electric, dielectric and magnetic properties of cobalt ferrite processed by co-precipitation technique. J Alloys Compds. 2010;508:115–118. doi:10.1016/j.jallcom.2010.08.007
  • Gaikwad P, Sawant S. Structural and electrical properties of rare earth (R 3 +) doped Cobalt ferrites. 2022.
  • Abbas G, Rehman AU, Gull W, et al. Impact of Co2+ on the spectral, optoelectrical, and dielectric properties of Mg 0.25 Ni 0.25 Cu0.5−x Cox Fe 1.97 La 0.03 O 4 ferrites prepared via sol–gel auto-combustion route. J Sol-Gel Sci Technol. 2022;101:428–442.
  • Ahamad MA, El Hiti MA, El Nimr MK, et al. The ac electrical conductivity for Co-substituted SbNi ferrites. Magnet Magnetic Mater. 1996;152:391–395.
  • Rehman AU, Amin N, Tahir MB, et al. Evaluation of spectral, optoelectrical, dielectric, magnetic, and morphological properties of RE3+ (La3+, and Ce3+) and Co2+ co-doped Zn0.75Cu0.25Fe2O4 ferrites. Mater Chem Phys 2022. 275:125301.
  • Amin N, Ul Hasan MS, Majeed Z, et al. Structural, electrical, optical and dielectric properties of yttrium substituted cadmium ferrites prepared by Co-precipitation method. Ceram Int. 2020;46:20798–20809. doi:10.1016/j.ceramint.2020.05.079
  • Hofmann S. Advanced functional materials and devices. 2022. https://link.springer.com/10.1007978-981-16-5971-3.
  • Salem BI, Hemeda OM, Henaish AMA, et al. Modified copper zinc ferrite nanoparticles doped with Zr ions for hyperthermia applications. Appl Phys A: Mater Sci Process [Internet]. 2022;128:1–13. doi:10.1007/s00339-022-05396-1
  • Rani R, Batoo KM, Sharma P, et al. Structural, morphological and temperature dependent electrical traits of Co0.9Zn0.1InxFe2-xO4 spinel nano-ferrites. Ceram Int. 2021;47:30902–30910.
  • Gawas UB, Verenkar VMS, Vader VT, et al. Effects of sintering temperature on microstructure, initial permeability and electric behaviour of Ni-Mn-Zn ferrites. Mater Chem Phys. 2022;275.
  • Rudys S, Balčiūnas S, Vollinger C, et al. Investigation of dielectric and magnetic properties of Al-800 ferrite. Lith J Phys. 2022;62:277–281.
  • Lan M, Zeng Z, Zhang Q, et al. Effect of sintering temperature on magnetoelectric properties of barium ferrite ceramics. J Mater Res. 2022;37:2837–2847.
  • Hossain MD, Jamil ATMK, Hossain MS, et al. Investigation on structure, thermodynamic and multifunctional properties of Ni-Zn-Co ferrite for Gd3+ substitution. RSC Adv. 2022;12:4656–4671.
  • Gawas SG, Verenkar VMS. Single-domain/multidomain bulk magnetic characteristics of Co-substituted Ni–Zn ferrites: tailoring the effect of Co substitution. J Mater Sci: Mater Electron. 2022;33:6004–6017. doi:10.1007/s10854-022-07780-2
  • Hassan MSU, Morley N, Ali SS, et al. Electrical, dielectric and magnetic properties of Mg2+ doped Zn-Co-La spinel ferrites for high microwave frequency (5.7–13.4 GHz) Applications. 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.