Publication Cover
Phase Transitions
A Multinational Journal
Volume 97, 2024 - Issue 4-5
158
Views
0
CrossRef citations to date
0
Altmetric
Articles

Structure and electric conductivity in lithium-chloro-phosphotungstate glasses

, , &
Pages 296-321 | Received 07 Oct 2022, Accepted 19 Feb 2024, Published online: 02 Mar 2024

References

  • Brow RK. The structure of simple phosphate glasses. J Non Cryst Solids. 2000;263:1–28. doi:10.1016/S0022-3093(99)00620-1
  • Che H, Chen S, Xie Y, et al. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ Sci. 2017;10:1075–1101. doi:10.1039/C7EE00524E
  • Gao Y, Chen G, Wang X, et al. PY13FSI-infiltrated SBA-15 as nonflammable and high ion-conductive ionogel electrolytes for quasi-solid-state sodium-Ion batteries. ACS Appl Mater Interfaces. 2020;12:22981–22991. doi:10.1021/acsami.0c04878
  • Das SS, Kumar P, Singh NP, et al. Preparation of some metal chloride doped silver phosphate glass electrolytes-application to solid state batteries. Ind J Eng Mater Sci. 2020;17:123–130.
  • Zhang Z, Ren J, Hu L. Fast ionic conducting glasses in the system 20LiCl-40Li2O-(80- x)PO5/2- xMoO3: the structural dependence of ion conductivity studied by solid-state nuclear magnetic resonance spectroscopy. J Phys Chem C. 2020;124:6528–6535. doi:10.1021/acs.jpcc.0c00171
  • Chowdari BVR, Radhakrishnan K. Ionic conductivity studies of the vitreous Li2O-P2O5-Ta2O5 system. J Non Cryst Solids. 1998;108:323–332. doi:10.1016/0022-3093(89)90304-9
  • Tsujimura T. Li-ion conductive phosphosilicate glass ceramics synthesized by ion exchange. Solid State Ion. 2014;262:829–832. doi:10.1016/j.ssi.2013.10.034
  • Rathore M, Dalvi A. Crystallization in Li2SO4-Li2O-P2O5 glassy ionic system: an assessment through electrical transport. J Non Cryst Solids. 2014;402:79–83. doi:10.1016/j.jnoncrysol.2014.05.012
  • Ganguli M, Rao KJ. Studies of ternary Li2SO4-Li2O-P2O5 glasses. J Non Cryst Solids. 1999;243:251–267. doi:10.1016/S0022-3093(98)00832-1
  • Ganguli M, Bhat MH, Rao KJ. Lithium ion transport in Li2SO4-Li2O-P2O5 glasses. Solid State Ion. 1999;122:23–33. doi:10.1016/S0167-2738(99)00059-4
  • Bih L, Allali N, Yacoubi A, et al. The glass forming region in the P2O5-A2MoO4 (A = Li, Na) glasses. Phys Chem Glas. 1999;40:229–234.
  • Bih L, Abbas L, Nadiri A, et al. Investigations of molybdenum redox phenomenon in Li2O-MoO3-P2O5 phosphate glasses. J Mol Struct. 2008;872:1–9. doi:10.1016/j.molstruc.2007.02.005
  • Bih L, El Omari M, Réau JM, et al. Electronic and ionic conductivity of glasses inside the Li2O-MoO3-P2O5 system. Solid State Ion. 2000;132:71. doi:10.1016/S0167-2738(00)00697-4
  • Es-Soufi H, Bih L, Benzineb M. Study of tungsten phosphate glasses containing Fe2O3. New J Glas Ceram. 2019;209:233–249.
  • Bridge B, Patel ND. Composition dependence of the infrared absorption spectra of molybdenum phosphate glasses and some crystalline analogues. J Non-Cryst Solids. 1987;91:27. doi:10.1016/S0022-3093(87)80083-2
  • Subbalakshmi P, Veeraiah N. Study of CaO-WO3-P2O5 glass system by dielectric properties, IR spectra and differential thermal analysis. J Non Cryst Solids. 2002;298:89–98. doi:10.1016/S0022-3093(01)01039-0
  • Haddad M, Nadiri A, Biyadi A, et al. Computer simulations of electron paramagnetic resonance spectra of P2O5-Li2WO4-Li2O glasses. J Alloys Compd. 1992;188:161–164. doi:10.1016/0925-8388(92)90666-W
  • Chowdari BVR, Tan KL, Chia WT. Raman and X-ray photoelectron spectroscopic studies of lithium phosphotungstate glasses. Solid State Ion. 1992;53–56:1172–1178. doi:10.1016/0167-2738(92)90308-C
  • Tanaka K, Yoko T, Yamada H, et al. Structure and ionic conductivity of LiCl-Li2O-TeO2 glasses. J Non Cryst Solids. 1988;103:250–256. doi:10.1016/0022-3093(88)90203-7
  • Irion M, Couzi M, Levasseur A, et al. An infrared and Raman study of new lonic-conductor lithium glasses. J Solid State Chem. 1980;31:285–294. doi:10.1016/0022-4596(80)90090-0
  • Forto Chungong L, Swansbury LA, Mountjoy G, et al. Atomic structure of chlorine containing calcium silicate glasses by neutron diffraction and 29Si solid-state NMR. Int J Appl Glas Sci. 2017;28:2383–2390.
  • Das SS, Kumar P, Singh NP, et al. Preparation of some metal chloride doped silver phosphate glass electrolytes-application to solid state batteries. Ind J Eng Mater Sci. 2010;17:123–130.
  • Ogiwara Y, Dejima K, Kyomen T, et al. Composition dependence of the glass network structure in Li+-ion conducting glasses of (LiCl)x(LiPO3)1-x studied by 31P MAS NMR. Key Eng Mater. 2014;596:31–34. doi:10.4028/www.scientific.net/KEM.596.31
  • Melo MPFGBMG, Attafi Y, Ben Haj Amara A, et al. Electrical and dielectric analysis of lithium chloride mixed sodium and lithium phosphate glasses. Int J Appl Glass Sci. 2017;9:333–343.
  • Waetzig K, Schilm J, Heubner C, et al. Li+ conductivity in the system Li2O-Nb2O5-P2O5-LiCl as solid electrolyte based on synthesized glasses and sintered glass ceramics. Solid State Ion. 2021;372:115769. doi:10.1016/j.ssi.2021.115769
  • Tron A, Nosenko A, Park YD, et al. The solid electrolytes Li2O–LiF–Li2WO4-B2O3 with enhanced ionic conductivity for lithium-ion battery. J Ind Eng Chem. 2019;73:62–66. doi:10.1016/j.jiec.2019.01.030
  • Bih L, Abbas L, Azrour M, et al. EPR investigation and thermal study of yA2O –(1–y)[ 0.25 (WO3)2–0.75 (P2O5)] (A = Li, Na) glasses. J Therm Anal Calorim. 2005;281:57–60. doi:10.1007/s10973-005-0745-z
  • Es-soufi H, Bih L, Manoun B, et al. Structure, thermal analysis and optical properties of lithium tungsten-titanophosphate glasses. J Non Cryst Solids. 2017;463:12–18. doi:10.1016/j.jnoncrysol.2017.02.013
  • Lide DR, editor. CRC handbook of chemistry and physics. Boca Raton: CRC Press; 2001.
  • Boudlich D, Bih L, Archidi MEH, et al. Infrared, Raman and electron spin resonance studies of vitreous alkaline tungsten phosphates and related glasses. J Am Ceram Soc. 2002;85:2623–2630. doi:10.1111/j.1151-2916.2002.tb00141.x
  • Nadiri A, Yaacoubi A, Bih L, et al. Structural approach of glasses belonging to the Li2O-Li2WO4-P2O5 ternary system. Adv Mater Res. 1994;1–2:413–420. doi:10.4028/www.scientific.net/AMR.1-2.413
  • Talib ZA, Daud WM, Loh YN, et al. Optical and electrical characteristics of (LiCl)x(P2O5)1-x glass. Ionics (Kiel). 2009;15:369–376. doi:10.1007/s11581-008-0276-2
  • Yu X, Bates JB, Jellison Jr GE, et al. A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J Electrochem Soc. 1997;144:524. doi:10.1149/1.1837443
  • Joshi JH, Kanchan DK, Joshi MJ, et al. Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Mater Res Bull. 2017;93:63–73. doi:10.1016/j.materresbull.2017.04.013
  • Aniya M. Medium range structure and power law conductivity dispersion in superionic glasses. J Non Cryst Solids. 2008;354:365–369. doi:10.1016/j.jnoncrysol.2007.06.088
  • Veeranna Gowda VC, Chethana BK, Narayana Reddy C. Ion transport studies in lithium phospho-molybdate glasses containing Cl- ion. Mater Sci Eng B Solid-State Mate. Adv Technol. 2013;178:826–833. doi:10.1016/j.mseb.2013.04.009
  • Tron A, Nosenko A, Park YD, et al. Synthesis of the solid electrolyte Li2O–LiF–P2O5 and its application for lithium-ion batteries. J Mun Solid State Ion. 2017;308:40–45. doi:10.1016/j.ssi.2017.05.019
  • Sidebottom DL, Green PF, Brow RK. Comparison of KWW and power law analyses of an ion-conducting glass. J Non Cryst Solids. 1995;183:151–160. doi:10.1016/0022-3093(94)00587-7
  • Ben Taher Y, Oueslati A, Khirouni K, et al. Dielectric spectroscopy and modulus study of aluminum diphosphate AgAlP2O7. J Clust Sci. 1995;26:11655–11669.
  • Pradhan DK, Choudhary RNP, Rinaldi C, et al. Effect of Mn substitution on electrical and magnetic properties of Bi0.9La0.1FeO3. J Appl Phys. 2009;106:0–10. doi:10.1063/1.3158121
  • Dyre JC, Maass P, Roling B, et al. Fundamental questions relating to ion conduction in disordered solids. Rep Prog Phys. 2009;72:046501. doi:10.1088/0034-4885/72/4/046501
  • Ghosh A, Pan A. Scaling of the conductivity spectra in ionic glasses: dependence on the structure. Phys Rev Lett. 2000;84:2188–2190. doi:10.1103/PhysRevLett.84.2188
  • Roling B, Happe A, Funke K, et al. Carrier concentrations and relaxation spectroscopy: new information from scaling properties of conductivity spectra in ionically conducting glasses. Phys Rev Lett. 1997;78:2160–2163. doi:10.1103/PhysRevLett.78.2160
  • Tho TD, Rao RP, Adams S. AC conductivity studies and relaxation behaviour in (LiX)y[(Li2O)0.6(P2O5)0.4](1-y) glasses. J Solid State Electrochem. 2010;14:1863–1867. doi:10.1007/s10008-010-1097-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.