758
Views
3
CrossRef citations to date
0
Altmetric
Articles

The cooling effect of green infrastructure in mitigating nocturnal urban heat islands: a case study of Yoyogi Park and Meiji Jingu Shrine in Tokyo

ORCID Icon
Pages 559-583 | Received 08 Apr 2021, Accepted 20 Feb 2022, Published online: 06 Apr 2022

References

  • Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147–155. doi:10.1016/j.landurbplan.2010.05.006.
  • Boegh, E., Soegaard, H., Broge, N., Hasager, C. B., Jensen, N. O., Schelde, K., et al. (2002). Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sensing of Environment, 81, 179–193. doi:10.1016/S0034-4257(01)00342-X.
  • Cao, X., Onishi, A., Chen, J., & Imura, H. (2010). Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landscape and Urban Planning, 96(4), 224–231. doi:10.1016/j.landurbplan.2010.03.008.
  • Clay, R., & Guan, H. (2020). The urban-parkland nocturnal temperature interface. Urban Climate, 31, 1–11. doi:10.1016/j.uclim.2020.100585
  • Doick, K. J., Peace, A., & Hutchings, T. R. (2014). The role of one large greenspace in mitigating London's nocturnal urban heat island. The Science of the Total Environment, 493, 662–671. doi:10.1016/j.scitotenv.2014.06.048.
  • Doick, K., & Hutchings, T. (2013). Air temperature regulation by urban trees and green infrastructure. Forestry Commission, Research Note, 12, 1–10. ISBN:978-0-85538-878-2
  • Eliasson, I., & Upmanis, H. (2000). Nocturnal airflow from urban parks: Implications for city ventilation. Theorerical and Applied Climatology, 66, 95–107 doi:10.1007/s007040070035.
  • Environmental GIS Laboratory Co. (2017). Airflow. Analyst Version, 1(5), 31.
  • European Commission (2016). Supporting the implementation of green infrastructure final report. Environment, 203.
  • Gill, S. E., Handley, J. F., Ennos, A. R., & Pauleit, S. (2007). Adapting cities for climate change: The role of the green infrastructure. Built Environment, 33(1), 115–133. doi:10.2148/benv.33.1.115.
  • Gunawardena, K. R., Wells, M. J., & Kershawa, T. (2017). Utilising green and blue space to mitigate Urban heat island intensity. Science of the Total Environment, 15, 584–585, 1040–1055.
  • Hamada, S., Tanaka, T., & Ohta, T. (2013). Impacts of land use and topography on the cooling effect of green areas on surrounding urban areas. Urban Forestry and Urban Greening, 12(4), 426–434. doi:10.1016/j.ufug.2013.06.008.
  • Holmer, B., Thorsson, S., & Linden, J. (2013). Evening evapotranspirative cooling in relation to vegetation and urban geometry in the city of Ouagadougou, Burkina Faso. International of Journal Climatology, 33, 3089–3105. doi:10.1002/joc.3561
  • Hsieh, C.-M., & Huang, H.-C. (2016). Mitigating urban heat islands: A method to identify potential wind corridor for cooling and ventilation. Computers, Environment and Urban Systems, 57, 130–143. doi:10.1016/j.compenvurbsys.2016.02.005.
  • Irie, T. (2017). Urban green infrastructure planning methods to mitigate urban heat island impacts and associated nighttime temperatures using Landsat 8 data. Landscape Research Japan Online, 10, 125–133. doi:10.5632/jilaonline.10.125.
  • Jiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112, 3833–3845. doi:10.1016/j.rse.2008.06.006.
  • Konijnendijk, C. C., Annerstedt, M., Nielsen, A. B., & Maruthaveeran, S. (2013). Benefits of urban parks: A systematic review. A report for IFPRA (International Federation of Parks and Recreation Administration). Copenhagen/Alnarp. 1–68.
  • Leconte, F., Bouyer, J., & Claverie, R. (2020). Nocturnal cooling in local climate zone: Statistical approach using mobile measurements. Urban Climate, 33, 1–11. doi:10.1016/j.uclim.2020.100629.
  • Lee, H., & Mayer, H. (2018). Maximum extent of human heat stress reduction on building areas due to urban greening. Urban Forestry and Urban Greening, 32, 154–167. doi:10.1016/j.ufug.2018.04.010.
  • Lee, H., Mayer, H., & Chen, L. (2016). Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landscape and Urban Planning, 148, 37–50. doi:10.1016/j.landurbplan.2015.12.004.
  • Lee, H., Mayer, H., & Kuttler, W. (2020). Impact of the spacing between tree crowns on the mitigation of daytime heat stress for pedestrians inside E-W urban street canyons under Central European conditions. Urban Forestry and Urban Greening, 48, 126558. doi:10.1016/j.ufug.2019.126558
  • Lee, S.-H., Lee, K.-S., Jin, W.-C., & Song, H.-K. (2009). Effect of an urban park on air temperature differences in a central business district area. Landscape Ecology and Engineering, 5, 183–191. doi:10.1007/s11355-009-0067-6
  • Mackey, C. W., Lee, X., & Smith, R. B. (2012). Remotely sensing the cooling effects of city scale efforts to reduce urban heat island. Building and Environment, 49, 348–358.
  • Oke, T. R. (1976). The distinction between canopy and boundary-layer urban heat islands. Atmosphere, 14(4), 268–277. doi:10.1080/00046973.1976.9648422.
  • Oke, T. R. (1987). Boundary Layer Climates. New York: Routledge.
  • Oke, T. R. (1989). The micrometeorology of the urban forest. Philosophical Transactions of the Royal Society of London Series B, 324, 335–348.
  • Oke, T. R., Mills, G., Christen, A., & Voogt, J. A. (2017). Urban Climates. Cambridge: Cambridge University Press.
  • Onishi, A., Cao, X., Ito, T., Shi, F., & Imura, H. (2010). Evaluating the potential for urban heat-island mitigation by greening parking lots. Urban Forestry and Urban Greening, 9(4), 323–332. doi:10.1016/j.ufug.2010.06.002
  • Shibuya City Office. (2020). Shibuya city urban development master plan. Retrieved March 11 2021 from http://www.city.shibuya.tokyo.jp/assets/com/000048425.pdf.
  • Shih, W. (2017). The cooling effect of green infrastructure on surrounding built environments in a sub-tropical climate: A case study in Taipei metropolis. Landscape Research, 42(5), 558–573. doi:10.1080/01426397.2016.1235684.
  • Srivanit, M., & Hokao, K. (2013). Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. Building and Environment, 66, 158–172. doi:10.1016/j.buildenv.2013.04.012
  • Sugawara, H., Shimizu, S., Takahashi, H., Hagiwara, S., Narita, K., Mikami, T., & Hirano, T. (2015). Thermal influence of a large green space on a hot urban environment. Journal of Environmental Quality, 45(1), 125–133. doi:10.2134/jeq2015.01.0049.
  • The Japanese Inter-Ministry Coordination Committee to Mitigate Urban Heat Island. (2004). Outline of the policy framework to reduce urban heat island effects. Retrieved March 7 2021 from http://www.env.go.jp/en/air/heat/heatisland.pdf.
  • The Japan Meteorological Agency. (2017). Climate change monitoring report. Retrieved March 7 2021 from https://www.jma.go.jp/jma/en/NMHS/ccmr/ccmr2016_high.pdf .
  • Toparlar, Y., Blocken, B., Maiheu, B., & van Heijst, G. J. F. (2017). A review on the CFD analysis of urban microclimate. Renewable and Sustainable Energy Reviews, 80, 1613–1640. doi:10.1016/j.rser.2017.05.248
  • Uchida, T., & Araya, R. (2019). Practical applications of the large-eddy simulation technique for wind environment assessment around new National Stadium, Japan (Tokyo Olympic stadium). Open Journal of Fluid Dynamics, 09(4), 269–291. doi:10.4236/ojfd.2019.94018.
  • Uchida, T., & Ohya, Y. (2008). Micro-siting technique for wind turbine generators by using large-eddy simulation. Journal of Wind Engineering and Industrial Aerodynamics, 96(10–11), 2121–2138 (in Japanese with English summary). doi:10.1016/j.jweia.2008.02.047
  • Vidrih, B., & Medved, S. (2013). Multiparametric model of urban park cooling island. Urban Forestry and Urban Greening, 12(2), 220–229. doi:10.1016/j.ufug.2013.01.002.
  • Wang, Y., & Akbari, H. (2016). The effects of street tree planting on Urban Heat Island mitigation in Montreal. Sustainable Cities and Society, 27, 122–128. doi:10.1016/j.scs.2016.04.013
  • Xiao, X., Hollinger, D., Aber, J., Goltz, M., Davidson, E. A., Zhang, Q., et al. (2004). Satellite based modeling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment, 89, 519–534. doi:10.1016/j.rse.2003.11.008.
  • Yuan, J., Emura, K., & Farnham, C. (2017). Is urban albedo or urban green covering more effective for urban microclimate improvement?: A simulation for Osaka. Nocturnal Airflow from Urban Parks-Implications for City Ventilation. Sustainable Cities and Society, 32, 78–86. doi:10.1016/j.scs.2017.03.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.