166
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A parametric study on the effects of displacer-cylinder-circumferential-wall thermal conditions on the performance of a γ-type LTD Stirling engine

, &
Pages 19-30 | Received 14 Aug 2017, Accepted 18 Feb 2018, Published online: 06 Mar 2018

References

  • Abuelyamen, A., R. Ben-Mansour, E. Abualhamayel H, and M. A. Mokheimer. 2017. “Parametric Study on Beta-Type Stirling Engine.” Energy Conversion and Management 145: 53–63. doi: 10.1016/j.enconman.2017.04.098
  • Aksoy, F., H. Solmaz, C. Çinar, and H. Karabulut. 2017. “1.2 kW Beta Type Stirling Engine with Rhombic Drive Mechanism.” International Journal of Energy Research 41: 1310–1321. doi: 10.1002/er.3714
  • Almajri, A. K., S. Mahmoud, and R. Al-Dadah. 2017. “Modelling and Parametric Study of an Efficient Alpha Type Stirling Engine Performance Based on 3D CFD Analysis.” Energy Conversion and Management 145: 93–106. doi: 10.1016/j.enconman.2017.04.073
  • Brueckner, S., L. Miró, L. F. Cabeza, M. Pehnt, and E. Laevemann. 2014. “Methods to Estimate the Industrial Waste Heat Potential of Regions – a Categorization and Literature Review.” Renewable and Sustainable Energy Reviews 38: 164–171. doi: 10.1016/j.rser.2014.04.078
  • Chen, W. L. 2017. “A Study on the Effects of Geometric Parameters in a low-Temperature Differential γ-Type Stirling Engine Using CFD.” International Journal of Heat and Mass Transfer 107: 1002–1013. doi: 10.1016/j.ijheatmasstransfer.2016.11.007
  • Chen, W. L., K. L. Wong, and H. E. Chen. 2014. “An Experimental Study on the Performance of the Moving Regenerator for a γ-Type Twin Power Piston Stirling Engine.” Energy Conversion and Management 77: 118–128. doi: 10.1016/j.enconman.2013.09.030
  • Chen, W. L., Y. C. Yang, and J. L. Salazar. 2015. “A CFD Parametric Study on the Performance of a Low-Temperature Differential γ-Type Stirling Engine.” Energy Conversion and Management 106: 635–643. doi: 10.1016/j.enconman.2015.10.007
  • Cheng, C. H., and Y. J. Yu. 2010. “Numerical Model for Predicting Thermodynamic Cycle and Thermal Efficiency of a Beta-Type Stirling Engine with Rhombic-Drive Mechanism.” Renewable Energy 35: 2590–2601. doi: 10.1016/j.renene.2010.04.002
  • Çinar, C., F. Aksoy, and Erol D. 2012. “The Effect of Displacer Material on the Performance of a low Temperature Differential Stirling Engine.” International Journal of Energy Research 36: 911–917. doi: 10.1002/er.1861
  • Gheith, R., F. Aloui, M. Tazerout, and S. B. Nasrallah. 2012. “Experimental Investigations of a Gamma Stirling Engine.” International Journal of Energy Research 36: 1175–1182. doi: 10.1002/er.1872
  • Karabulut, H., C. Çinar, E. Ozturk, and H. S. Yucesu. 2010. “Torque and Power Characteristics of a Helium Charged Stirling Engine with a Lever Controlled Displacer Driving Mechanism.” Renewable Energy 35: 138–143. doi: 10.1016/j.renene.2009.04.023
  • Kato, Y. 2016. “Indicated Diagrams of a low Temperature Differential Stirling Engine Using Flat Plates as Heat Exchangers.” Renewable Energy 85: 973–980. doi: 10.1016/j.renene.2015.07.053
  • Kongtragool, B., and S. Wongwises. 2008. “A Four Power-Piston Low-Temperature Differential Stirling Engine Using Simulated Solar Energy as a Heat Source.” Solar Energy 82: 493–500. doi: 10.1016/j.solener.2007.12.005
  • Lebon, G. S. B., M. K. Patel, G. Djambazov, and K. A. Pericleous. 2012. “Mathematical Modelling of a Compressible Oxygen jet Entering a hot Environment Using a Pressure-Based Finite Volume Code.” Computers & Fluids 59: 91–100. doi: 10.1016/j.compfluid.2012.02.016
  • Lien, F. S., W. L. Chen, and M. A. Leschziner. 1996. “A Multiblock Implementation of a non-Orthogonal, Collocated Finite Volume Algorithm for Complex Turbulent Flows.” International Journal for Numerical Methods in Fluids 23: 567–588. doi: 10.1002/(SICI)1097-0363(19960930)23:6<567::AID-FLD443>3.0.CO;2-A
  • Mahkamov, K. 2006a. “An Axisymmetric Computational Fluid Dynamics Approach to the Analysis of the Working Process of a Solar Stirling Engine.” Journal of Solar Energy Engineering 128: 45–53. doi: 10.1115/1.2148979
  • Mahkamov, K. 2006b. “Design Improvements to a Biomass Stirling Engine Using Mathematical Analysis and 3D CFD Modeling.” Journal of Solar Energy Engineering 128: 203–215. doi: 10.1115/1.2148979
  • Timoumi, Y., I. Tlili, and S. B. Nasrallah. 2008. “Design and Performance Optimization of GPU-3 Stirling Engines.” Energy 33: 1100–1114. doi: 10.1016/j.energy.2008.02.005
  • Wang, K., S. R. Sander, S. Dubey, F. H. Choo, and F. Duan. 2016. “Stirling Cycle Engines for Recovering low and Moderate Temperature Heat: A Review.” Renewable and Sustainable Energy Reviews 62: 89–108. doi: 10.1016/j.rser.2016.04.031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.