971
Views
24
CrossRef citations to date
0
Altmetric
Reviews

Waste into energy conversion technologies and conversion of food wastes into the potential products: a review

ORCID Icon, ORCID Icon, , , &
Pages 1083-1101 | Received 10 Aug 2018, Accepted 15 Oct 2018, Published online: 02 Nov 2018

References

  • Abdulkarim, B. I., and M. A. A. Hassan. 2015. “Thermal Plasma Treatment of Wastes: A Review.” Australian Journal of Basic and Applied Sciences 9 (31): 322–333.
  • Abubackar, H. N., M. C. Veiga, and C. Kennes. 2011. “Biological Conversion of Carbon Monoxide: Rich Syngas or Waste Gases to Bioethanol.” Biofuels, Bioproducts and Biorefining 5 (1): 93–114. doi: 10.1002/bbb.256
  • Adhikari, B. K., S. Barrington, J. Martinez, and S. King. 2008. “Characterization of Food Waste and Bulking Agents for Composting.” Waste Management 28: 795–804. doi: 10.1016/j.wasman.2007.08.018
  • Adhikari, B. K., S. Barrington, J. Martinez, and S. King. 2009. “Effectiveness of Three Bulking Agents for Food Waste Composting.” Waste Management 29: 197–203. doi: 10.1016/j.wasman.2008.04.001
  • Agapiou, A., J. P. Vamvakari, A. Andrianopoulos, and A. Pappa. 2016. “Volatile Emissions During Storing of Green Food Waste Under Different Aeration Conditions.” Environmental Science and Pollution Research 23 (9): 8890–8901. doi: 10.1007/s11356-016-6131-5
  • Ahmed, I. I., and A. K. Gupta. 2010. “Pyrolysis and Gasification of Food Waste: Syngas Characteristics and Char Gasification Kinetics.” Applied Energy 87: 101–108. doi: 10.1016/j.apenergy.2009.08.032
  • Appels, L., J. Lauwers, J. Degrève, L. Helsen, B. Lievens, K. Willems, J. V. Impe, and R. Dewil. 2011. “Anaerobic Digestion in Global bio-Energy Production: Potential and Research Challenges.” Renewable and Sustainable Energy Reviews 15: 4295–4301. doi: 10.1016/j.rser.2011.07.121
  • Arafat, H. A., K. Jijakli, and A. Ahsan. 2015. “Environmental Performance and Energy Recovery Potential of Five Processes for Municipal Solid Waste Treatment.” Journal of Cleaner Production 105: 233–240. doi: 10.1016/j.jclepro.2013.11.071
  • Arapoglou, D., T. Varzakas, A. Vlyssides, and C. Israilides. 2010. “Ethanol Production from Potato Peel Waste (PPW).” Waste Management 30: 1898–1902. doi: 10.1016/j.wasman.2010.04.017
  • Arena, U. 2012. “Process and Technological Aspects of Municipal Solid Waste Gasification. A Review.” Waste Management 32: 625–639. doi: 10.1016/j.wasman.2011.09.025
  • Bai, F. W., W. A. Anderson, and M. Moo-Young. 2008. “Ethanol Fermentation Technologies from Sugar and Starch Feedstocks.” Biotechnology Advances 26: 89–105. doi: 10.1016/j.biotechadv.2007.09.002
  • Balata, M., H. Balata, and C. Oz. 2008. “Progress in Bioethanol Processing.” Progress in Energy and Combustion Science 34: 551–573. doi: 10.1016/j.pecs.2007.11.001
  • Berge, N. D., K. S. Ro, J. Mao, J. R. V. Flora, M. A. Chappell, and S. Bae. 2011. “Hydrothermal Carbonization of Municipal Waste Streams.” Environmental Science and Technology 45: 5696–5703. doi: 10.1021/es2004528
  • Bonizzoni, G., and E. Vassallo. 2002. “Plasma Physics and Technology; Industrial Applications.” Vacuum 64: 327–336. doi: 10.1016/S0042-207X(01)00341-4
  • Bosmans, A., I. Vanderreydt, D. Geysen, and L. Helsen. 2013. “The Crucial Role of Waste-to-Energy Technologies in Enhanced Landfill Mining: A Technology Review.” Journal of Cleaner Production 55: 10–23. doi: 10.1016/j.jclepro.2012.05.032
  • Bothast, R. J., and M. A. Schlicher. 2005. “Biotechnological Processes for Conversion of Corn into Ethanol.” Applied Microbiology and Biotechnology 67: 19–25. doi: 10.1007/s00253-004-1819-8
  • Bridgwater, A. V. 2012. “Review of Fast Pyrolysis of Biomass and Product Upgrading.” Biomass and Bioenergy 38: 68–94. doi: 10.1016/j.biombioe.2011.01.048
  • Briens, C., J. Piskorz, and F. Berruti. 2008. “Biomass Valorization for Fuel and Chemicals Production – A Review.” International Journal of Chemical Reactor Engineering 6: 50. doi: 10.2202/1542-6580.1674
  • Byun, Y., W. Namkung, M. Cho, J. W. Chung, Y. S. Kim, and J. H. Lee. 2010. “Demonstration of Thermal Plasma Gasification/Vitrification for Municipal Solid Waste Treatment.” Environmental Science and Technology 44: 6680–6684. doi: 10.1021/es101244u
  • Canakci, M. 2007. “The Potential of Restaurant Waste Lipids as Biodiesel Feedstocks.” Bioresource Technology 98: 183–190. doi: 10.1016/j.biortech.2005.11.022
  • Carabin, P., E. Palumbo, and T. Alexakis. 2004. “Two-Stage Plasma Gasification of Waste” IT3'04 Conference, Phoenix, Arizona, 11 Pages.
  • Cedzynska, K., Z. Kolacinski, M. Izydorczyk, and W. Sroczynki. 1999. “Plasma Vitrification of Waste Incinerator Ashes” 1999 International Ash Utilization Symposium, University of Kentucky, 5 Pages.
  • Cerda, A., A. Artola, X. Font, R. Barrena, T. Gea, and A. Sánchez. 2017. “Composting of Food Wastes: Status and Challenges.” Bioresource Technology, doi:10.1016/j.biortech.2017.06.133.
  • Chang, J. I., and Y. J. Chen. 2010. “Effects of Bulking Agents on Food Waste Composting.” Bioresource Technology 101: 5917–5924. doi: 10.1016/j.biortech.2010.02.042
  • Chang, J. I., J. J. Tsai, and K. H. Wu. 2006. “Thermophilic Composting of Food Waste.” Bioresource Technology 97: 116–122. doi: 10.1016/j.biortech.2005.02.013
  • Chen, D., L. Yin, H. Wang, and P. He. 2015. “Reprint of: Pyrolysis Technologies for Municipal Solid Waste: A Review.” Waste Management 37: 116–136. doi: 10.1016/j.wasman.2015.01.022
  • Christophe, G., V. Kumar, R. Nouaille, G. Gaudet, P. Fontanille, A. Pandey, C. R. Soccol, and C. Larroche. 2012. “Recent Developments in Microbial Oils Production: A Possible Alternative to Vegetable Oils for Biodiesel Without Competition with Human Food?” Brazilian Archieves of Biology and Technology 55 (1): 29–46. doi: 10.1590/S1516-89132012000100004
  • Chu, C. F., Y. Y. Li, K. Q. Xu, Y. Ebie, Y. Inamori, and H. N. Kong. 2008. “A pH- and Temperature-Phased Two-Stage Process for Hydrogen and Methane Production from Food Waste.” International Journal of Hydrogen Energy 33: 4739–4746. doi: 10.1016/j.ijhydene.2008.06.060
  • Curry, N., and P. Pillay. 2012. “Biogas Prediction and Design of a Food Waste to Energy System for the Urban Environment.” Renewable Energy 41: 200–209. doi: 10.1016/j.renene.2011.10.019
  • Czernik, C., and A. V. Bridgwater. 2004. “Overview of Applications of Biomass Fast Pyrolysis Oil.” Energy & Fuels 18: 590–598. doi: 10.1021/ef034067u
  • Dahl, R. 2015. “A Second Life for Scraps: Making Biogas from Food Waste.” Environmental Health Perspectives 123 (7): A180–A183. doi: 10.1289/ehp.123-A180
  • Das, D., and T. N. Veziroglu. 2008. “Advances in Biological Hydrogen Production Processes.” International Journal of Hydrogen Energy 33: 6046–6057. doi: 10.1016/j.ijhydene.2008.07.098
  • Demirbas, A. 2004. “Pyrolysis of Municipal Plastic Wastes for Recovery of Gasoline-Range Hydrocarbons.” Journal of Analytical and Applied Pyrolysis 72: 97–102. doi: 10.1016/j.jaap.2004.03.001
  • Demirbas, A. 2008. “Biofuels Sources, Biofuel Policy, Biofuel Economy and Global Biofuel Projections.” Energy Conversion and Management 49 (8): 2106–2116. doi: 10.1016/j.enconman.2008.02.020
  • Demirbas, A. 2008. “Biomethanol Production from Organic Waste Materials.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 30: 565–572. doi: 10.1080/15567030600817167
  • Devarapalli, M., and H. K. Atiyeh. 2015. “A Review of Conversion Processes for Bioethanol Production with a Focus on Syngas Fermentation.” Biofuel Research Journal 2: 268–280. doi: 10.18331/BRJ2015.2.3.5
  • Dickerson, T., and J. Soria. 2013. “Catalytic Fast Pyrolysis: A Review.” Energies 6 (1): 514–538. doi: 10.3390/en6010514
  • Digman, B., and D. S. Kim. 2008. “Review: Alternative Energy from Food Processing Wastes.” Environmental Progress 27 (4): 524–537. doi: 10.1002/ep.10312
  • El-Mashad, H. M., and R. Zhang. 2010. “Biogas Production from Co-digestion of Dairy Manure and Food Waste.” Bioresource Technology 101: 4021–4028. doi: 10.1016/j.biortech.2010.01.027
  • Enders, A., K. Hanley, T. Whitman, S. Joseph, and J. Lehmann. 2012. “Characterization of Biochars to Evaluate Recalcitrance and Agronomic Performance.” Bioresource Technology 114: 644–653. doi: 10.1016/j.biortech.2012.03.022
  • Eriksson, O., M. Carlsson Reich, B. Frostell, A. Björklund, G. Assefa, J.-O. Sundqvist, and L. Thyselius. 2005. “Municipal Solid Waste Management from a Systems Perspective.” Journal of Cleaner Production 13 (3): 241–252. doi: 10.1016/j.jclepro.2004.02.018
  • Ermolaev, E., A. Jarvis, C. Sundberg, S. Smars, M. Pell, and H. Jonsson. 2015. “Nitrous Oxide and Methane Emissions from Food Waste Composting at Different Temperatures.” Waste Management 46: 113–119. doi: 10.1016/j.wasman.2015.08.021
  • Eroglu, E., and A. Melis. 2011. “Photobiological Hydrogen Production: Recent Advances and State of the Art.” Bioresource Technology 102: 8403–8413. doi: 10.1016/j.biortech.2011.03.026
  • Faaij, A. 2006. “Modern Biomass Conversion Technologies.” Mitigation and Adaptation Strategies for Global Change 11: 343–375. doi: 10.1007/s11027-005-9004-7
  • Fabry, F., C. Rehmet, V. J. Rohani, and L. Fulcheri. 2013. “Waste Gasification by Thermal Plasma: A Review.” Waste and Biomass Valorization 4 (3): 421–439. doi: 10.1007/s12649-013-9201-7
  • FAO. 2011. “Global Food Losses and Food Waste – Extent, Causes and Prevention” International Congress SAVE FOOD!, Rome, 37 pages.
  • FAO. 2015. “Global Initiatives on Food Loss and Waste Reduction” http://www.fao.org/save-food (accessed on August 26, 2017), 8 pages.
  • Farrell, M., and D. L. Jones. 2010. “Food Waste Composting: Its Use as a Peat Replacement.” Waste Management 30: 1495–1501. doi: 10.1016/j.wasman.2010.01.032
  • Galanakis, C. M. 2012. “Recovery of High Added-Value Components from Food Wastes: Conventional, Emerging Technologies and Commercialized Applications.” Trends in Food Science & Technology 26: 68–87. doi: 10.1016/j.tifs.2012.03.003
  • Girotto, F., L. Alibardi, and R. Cossu. 2015. “Food Waste Generation and Industrial Uses: A Review.” Waste Management 45: 32–41. doi: 10.1016/j.wasman.2015.06.008
  • Godfray, H. C. J., J. R. Beddington, I. R. Crute, L. Haddad, D. Lawrence, J. F. Muir, J. Pretty, S. Robinson, S. M. Thomas, and C. Toulmin. 2010. “Food Security: The Challenge of Feeding 9 Billion People.” Science 327: 812–818. doi: 10.1126/science.1185383
  • Goyal, H. B., D. Seal, and R. C. Saxena. 2008. “Bio-fuels from Thermochemical Conversion of Renewable Resources: A Review.” Renewable and Sustainable Energy Reviews 12: 504–517. doi: 10.1016/j.rser.2006.07.014
  • Gray, K. A., L. Zhao, and M. Emptage. 2006. “Bioethanol.” Current Opinion in Chemical Biology 10: 141–146. doi: 10.1016/j.cbpa.2006.02.035
  • Hall, G. M., and J. Howe. 2012. “Energy from Waste and the Food Processing Industry.” Process Safety and Environmental Protection 90: 203–212. doi: 10.1016/j.psep.2011.09.005
  • Han, S. K., and H. S. Shin. 2004. “Biohydrogen Production by Anaerobic Fermentation of Food Waste.” International Journal of Hydrogen Energy 29: 569–577. doi: 10.1016/j.ijhydene.2003.09.001
  • Henstra, A. M., J. Sipma, A. Rinzema, and A. J. M. Stams. 2007. “Microbiology of Synthesis Gas Fermentation for Biofuel Production.” Current Opinion in Biotechnology 18: 200–206. doi: 10.1016/j.copbio.2007.03.008
  • Heo, H. S., H. J. Park, Y. K. Park, C. Ryu, D. J. Suh, Y. W. Suh, J. H. Yim, and S. S. Kim. 2010. “Bio-Oil Production from Fast Pyrolysis of Waste Furniture Sawdust in a Fluidized Bed.” Bioresource Technology 101: S91–S96. doi: 10.1016/j.biortech.2009.06.003
  • Holladay, J. D., J. Hu, D. L. King, and Y. Wang. 2009. “An Overview of Hydrogen Production Technologies.” Catalysis Today 139: 244–260. doi: 10.1016/j.cattod.2008.08.039
  • Hong, Y. S., and H. H. Yoon. 2011. “Ethanol Production from Food Residues.” Biomass and Bioenergy 35: 3271–3275. doi: 10.1016/j.biombioe.2011.04.030
  • Huang, C., X. Chen, L. Xiong, X. Chen, L. Ma, and Y. Chen. 2013. “Single Cell Oil Production from low-Cost Substrates: The Possibility and Potential of Its Industrialization.” Biotechnology Advances 31: 129–139. doi: 10.1016/j.biotechadv.2012.08.010
  • The International Solid Waste Association. 2013. “Food Waste as a Global Issue – from the Perspective of Municipal Solid Waste Management” 30 Pages.
  • Jain, S., S. Jain, I. T. Wolf, J. Lee, and Y. W. Tong. 2015. “A Comprehensive Review on Operating Parameters and Different Pretreatment Methodologies for an Aerobic Digestion of Municipal Solid Waste.” Renewable and Sustainable Energy Reviews 52: 142–154. doi: 10.1016/j.rser.2015.07.091
  • Jayathilakan, K., K. Sultana, K. Radhakrishna, and A. S. Bawa. 2012. “Utilization of Byproducts and Waste Materials From Meat, Poultry and Fish Processing Industries: A Review.” Food Science and Technology 49 (3): 278–293. doi: 10.1007/s13197-011-0290-7
  • Jeevahan, J., M. Chandrasekaran, G. B. Joseph, A. Poovannan, and V. Sriram. 2017. “Experimental Investigation of the Influence of Isobutanol Addition on Engine Performance and Emissions of a Direct Ignition Diesel Engine Fuelled by Biodiesel Blends Derived from Waste Vegetable oil.” International Journal of Ambient Energy. doi:10.1080/01430750.2017.1381158.
  • Jeevahan, J., M. Chandrasekaran, G. Mageshwaran, G. Britto Joseph, and S. Staline. 2016. “Investigation of Engine Performance and Emissions of B20 Biodiesel Blend and Effect of EGR on NOx Emissions Reduction.” Journal of Chemical and Pharmaceutical Sciences 9 (4): 2469–2473.
  • Jeevahan, J., G. Mageshwaran, G. Britto Joseph, R. B. Durai Raj, and R. T. Kannan. 2017. “Various Strategies for Reducing Nox Emissions of Biodiesel Fuel Used in Conventional Diesel Engines: A Review.” Chemical Engineering Communications 204 (10): 1202–1223. doi: 10.1080/00986445.2017.1353500
  • Kalyani, K. A., and K. K. Pandey. 2014. “Waste to Energy Status in India: A Short Review.” Renewable and Sustainable Energy Reviews 31: 113–120. doi: 10.1016/j.rser.2013.11.020
  • Kammann, C., S. Ratering, C. Eckhard, and C. Muller. 2012. “Biochar and Hydrochar Effects on Greenhouse Gas (Carbon Dioxide, Nitrous Oxide, and Methane) Fluxes from Soils.” Journal of Environmental Quality 41: 1052–1066. doi: 10.2134/jeq2011.0132
  • Kapdan, I. K., and F. Kargi. 2006. “Bio-hydrogen Production from Waste Materials.” Enzyme and Microbial Technology 38: 569–582. doi: 10.1016/j.enzmictec.2005.09.015
  • Karmee, S. K. 2016. “Liquid Biofuels from Food Waste: Current Trends, Prospect and Limitation.” Renewable and Sustainable Energy Reviews 53: 945–953. doi: 10.1016/j.rser.2015.09.041
  • Karmee, S. K., and C. S. K. Lin. 2014. “Lipids from Food Waste as Feedstock for Biodiesel Production: Case Hong Kong.” Lipid Technology 26 (9): 206–209. doi: 10.1002/lite.201400044
  • Kasmuri, N. H., S. K. Kamarudin, S. R. S. Abdullah, H. A. Hasan, and A. M. Som. 2017. “Process System Engineering Aspect of Bio-Alcohol Fuel Production from Biomass via Pyrolysis: An Overview.” Renewable and Sustainable Energy Reviews 79: 914–923. doi: 10.1016/j.rser.2017.05.182
  • Kaushik, R., G. K. Parshetti, Z. Liu, and R. Balasubramanian. 2014. Bioresourse Technology, 8 Pages.
  • Kelkar, S., C. M. Saffron, L. Chai, J. Bovee, T. R. Stuecken, M. Garedew, Z. Li, and R. M. Kriegel. 2015. “Pyrolysis of Spent Coffee Grounds Using a Screw-Conveyor Reactor.” Fuel Processing Technology 137: 170–178. doi: 10.1016/j.fuproc.2015.04.006
  • Khalid, A., M. Arshad, M. Anjum, T. Mahmood, and L. Dawson. 2011. “The Anaerobic Digestion of Solid Organic Waste.” Waste Management 31: 1737–1744. doi: 10.1016/j.wasman.2011.03.021
  • Khoo, H. H., T. Z. Lim, and R. B. H. Tan. 2010. “Food Waste Conversion Options in Singapore: Environmental Impacts Based on an LCA Perspective.” Science of the Total Environment 408: 1367–1373. doi: 10.1016/j.scitotenv.2009.10.072
  • Kim, S., and B. E. Dale. 2004. “Global Potential Bioethanol Production from Wasted Crops and Crop Residues.” Biomass and Bioenergy 26: 361–375. doi: 10.1016/j.biombioe.2003.08.002
  • Kim, J. H., J. C. Lee, and D. Pak. 2011. “Feasibility of Producing Ethanol from Food Waste.” Waste Management 31: 2121–2125. doi: 10.1016/j.wasman.2011.04.011
  • Kim, J. K., B. R. Oh, H. J. Shin, C. Y. Eom, and S. W. Kim. 2008. “Statistical Optimization of Enzymatic Saccharification and Ethanol Fermentation Using Food Waste.” Process Biochemistry 43: 1308–1312. doi: 10.1016/j.procbio.2008.07.007
  • Kim, M. H., Y. E. Song, H. B. Song, J. W. Kim, and S. J. Hwang. 2011. “Evaluation of Food Waste Disposal Options by LCC Analysis from the Perspective of Global Warming: Jungnang Case, South Korea.” Waste Management 31: 2112–2120. doi: 10.1016/j.wasman.2011.04.019
  • Kiran, E. U., A. P. Trzcinski, W. J. Ng, and Y. Liu. 2014. “Bioconversion of Food Waste to Energy: A Review.” Fuel 134: 389–399. doi: 10.1016/j.fuel.2014.05.074
  • Ko, M. K., W. Y. Lee, S. B. Kim, K. W. Lee, and H. S. Chun. 2001. “Gasification of Food Waste with Steam in Fluidized Bed.” Korean Journal of Chemical Engineering 18 (6): 961–964. doi: 10.1007/BF02705626
  • Komemoto, K., Y. G. Lim, N. Nagao, Y. Onoue, C. Niwa, and T. Toda. 2009. “Effect of Temperature on VFA’s and Biogas Production in Anaerobic Solubilization of Food Waste.” Waste Management 29: 2950–2955. doi: 10.1016/j.wasman.2009.07.011
  • Kothari, R., D. P. Singh, V. V. Tyagi, and S. K. Tyagi. 2012. “Fermentative Hydrogen Production – An Alternative Clean Energy Source.” Renewable and Sustainable Energy Reviews 16: 2337–2346. doi: 10.1016/j.rser.2012.01.002
  • Krishna, D., and A. S. Kalamdhad. 2014. “Pre-treatment and Anaerobic Digestion of Food Waste for High Rate Methane Production – A Review.” Journal of Environmental Chemical Engineering 2: 1821–1830. doi: 10.1016/j.jece.2014.07.024
  • Kumar, M., Y. L. Ou, and J. G. Lin. 2010. “Co-composting of Green Waste and Food Waste at Low C/N Ratio.” Waste Management 30: 602–609. doi: 10.1016/j.wasman.2009.11.023
  • Kummu, M., H. D. Moel, M. Porkka, S. Siebert, O. Varis, and P. J. Ward. 2012. “Lost Food, Wasted Resources: Global Food Supply Chain Losses and Their Impacts on Freshwater, Cropland, and Fertiliser Use.” Science of the Total Environment 438: 477–489. doi: 10.1016/j.scitotenv.2012.08.092
  • Kwapinski, W., C. Byrne, E. Kryachko, P. Wolfram, C. Adley, J. J. Leahy, E. H. Novotny, and M. H. B. Hayes. 2010. “Biochar from Biomass and Waste.” Waste and Biomass Valorization 1 (2): 177–189. doi: 10.1007/s12649-010-9024-8
  • Lange, W., and A. Nahman. 2015. “Costs of Food Waste in South Africa: Incorporating Inedible Food Waste.” Waste Management 40: 167–172. doi: 10.1016/j.wasman.2015.03.001
  • Leiva-Candia, D. E., S. Pinzi, M. D. Redel-Macias, A. Koutinas, C. Webbb, and M. P. Dorado. 2014. “The Potential for Agro-Industrial Waste Utilization Using Oleaginous Yeast for the Production of Biodiesel.” Fuel 123: 33–42. doi: 10.1016/j.fuel.2014.01.054
  • Leung, D. Y. C., and J. Wang. 2016. “An Overview on Biogas Generation from Anaerobic Digestion of Food Waste.” International Journal of Green Energy 13 (2): 119–131. doi: 10.1080/15435075.2014.909355
  • Levin, D. B., L. Pitt, and M. Love. 2004. “Biohydrogen Production: Prospectsand Limitations to Practical Application.” International Journal of Hydrogen Energy 29: 173–185. doi: 10.1016/S0360-3199(03)00094-6
  • Levis, J. W., and M. A. Barlaz. 2011. “What Is the Most Environmentally Beneficial Way to Treat Commercial Food Waste?” Environmental Science & Technology 45: 7438–7444. doi: 10.1021/es103556m
  • Li, Z., H. Lu, L. Ren, and L. He. 2013. “Experimental and Modeling Approaches for Food Waste Composting: A Review.” Chemosphere 93: 1247–1257. doi: 10.1016/j.chemosphere.2013.06.064
  • Li, Y., S. Y. Park, and J. Zhu. 2011. “Solid-state Anaerobic Digestion for Methane Production from Organic Waste.” Renewable and Sustainable Energy Reviews 15: 821–826. doi: 10.1016/j.rser.2010.07.042
  • Libra, J. A., K. S. Ro, C. Kammann, A. Funke, N. D. Berge, Y. Neubauer, M. M. Titirici, et al. 2011. “Hydrothermal Carbonization of Biomass Residuals: A Comparative Review of the Chemistry, Processes and Applications of Wet and Dry Pyrolysis.” Biofuels 2 (1): 71–106. doi: 10.4155/bfs.10.81
  • Lin, C. S. K., L. A. Pfaltzgraff, L. Herrero-Davila, E. B. Mubofu, S. Abderrahim, J. H. Clark, A. A. Koutinas, et al. 2013. “Food Waste as a Valuable Resource for the Production of Chemicals, Materials and Fuels. Current Situation and Global Perspective.” Energy & Environmental Science 6: 426–464. doi: 10.1039/c2ee23440h
  • Lin, Y., and S. Tanaka. 2006. “Ethanol Fermentation from Biomass Resources: Current State and Prospects.” Applied Microbiology and Biotechnology 69: 627–642. doi: 10.1007/s00253-005-0229-x
  • Lin, J., J. Zuo, L. Gan, P. Li, F. Liu, K. Wang, L. Chen, and H. Gan. 2011. “Effects of Mixture Ratio on Anaerobic Co-Digestion with Fruit and Vegetable Waste and Food Waste of China.” Journal of Environmental Sciences 23 (8): 1403–1408. doi: 10.1016/S1001-0742(10)60572-4
  • Liu, X., R. Li, M. Ji, and L. Han. 2013. “Hydrogen and Methane Production by Co-Digestion of Waste Activated Sludge and Food Waste in the Two-Stage Fermentation Process: Substrate Conversion and Energy Yield.” Bioresource Technology 146: 317–323. doi: 10.1016/j.biortech.2013.07.096
  • Liu, Z., A. Quek, S. K. Hoekman, and R. Balasubramanian. 2013. “Production of Solid Biochar Fuel from Waste Biomass by Hydrothermal Carbonization.” Fuel 103: 943–949. doi: 10.1016/j.fuel.2012.07.069
  • Lu, X., B. Jordan, and N. D. Berge. 2012. “Thermal Conversion of Municipal Solid Waste via Hydrothermal Carbonization: Comparison of Carbonization Products to Products from Current Waste Management Techniques.” Waste Management 32: 1353–1365. doi: 10.1016/j.wasman.2012.02.012
  • Madamwar, D., N. Garg, and V. Shah. 2000. “Cyanobacterial Hydrogen Production.” World Journal of Microbiology and Biotechnology 16: 757–767. doi: 10.1023/A:1008919200103
  • Malatak, J., and T. Dlabaja. 2016. ““Hydrothermal Carbonization of Kitchen Waste.” Research in Agricultural Engineering 62: 64–72. doi: 10.17221/34/2014-RAE
  • Martin, M. E., H. Richter, S. Saha, and L. T. Angenent. 2016. “Traits of Selected Clostridium Strains for Syngas Fermentation to Ethanol.” Biotechnology and Bioengineering 113 (3): 531–539. doi: 10.1002/bit.25827
  • Matsakas, L., D. Kekos, M. Loizidou, and P. Christakopoulos. 2014. “Utilization of Household Food Waste for the Production of Ethanol at High dry Material Content.” Biotechnology for Biofuels 7: 4–13. doi: 10.1186/1754-6834-7-4
  • McBeath, A. V., R. J. Smernik, E. S. Krull, and J. Lehmann. 2014. “The Influence of Feedstock and Production Temperature on Biochar Carbon Chemistry: A Solid-State 13C NMR Study.” Biomass and Bioenergy 60: 121–129. doi: 10.1016/j.biombioe.2013.11.002
  • McGaughy, K., and M. T. Reza. 2017. “Hydrothermal Carbonization of Food Waste: Simplified Process Simulation Model Based on Experimental Results.” Biomass Conversion and Biorefinery, 10. doi: 10.1007/s13399-017-0276-4.
  • McKay, G. 2002. “Dioxin Characterisation, Formation and Minimisation During Municipal Solid Waste (MSW) Incineration: Review.” Chemical Engineering Journal 86: 343–368. doi: 10.1016/S1385-8947(01)00228-5
  • McKinlay, J. B., and C. S. Harwood. 2010. “Photobiological Production of Hydrogen Gas as a Biofuel.” Current Opinion in Biotechnology 21: 244–251. doi: 10.1016/j.copbio.2010.02.012
  • Melikoglu, M., C. S. K. Lin, and C. Webb. 2013. “Analysing Global Food Waste Problem: Pinpointing the Facts and Estimating the Energy Content.” Central European Journal of Engineering 3 (2): 157–164.
  • Mirabella, N., V. Castellani, and S. Sala. 2014. “Current Options for the Valorization of Food Manufacturing Waste: a Review.” Journal of Cleaner Production 65: 28–41. doi: 10.1016/j.jclepro.2013.10.051
  • Mondal, P., G. S. Dang, and M. O. Garg. 2011. “Syngas Production Through Gasification and Cleanup for Downstream Applications – Recent Developments.” Fuel Processing Technology 92: 1395–1410. doi: 10.1016/j.fuproc.2011.03.021
  • Moon, H. C., I. S. Song, J. C. Kim, Y. Shirai, D. H. Lee, J. K. Kim, S. O. Chung, D. H. Kim, K. K. Oh, and Y. S. Cho. 2009. “Enzymatic Hydrolysis of Food Waste and Ethanol Fermentation.” International Journal of Energy Research 33: 164–172. doi: 10.1002/er.1432
  • Muangrat, R., J. A. Onwudili, and P. T. Williams. 2010. “Reaction Products from the Subcritical Water Gasification of Food Wastes and Glucose with NaOH and H2O2.” Bioresource Technology 101: 6812–6821. doi: 10.1016/j.biortech.2010.03.114
  • Munasinghe, P. C., and S. K. Khanal. 2010. “Biomass-Derived Syngas Fermentation into Biofuels: Opportunities and Challenges.” Bioresource Technology 101: 5013–5022. doi: 10.1016/j.biortech.2009.12.098
  • Nagy, G., A. Wopera, and T. Koos. 2014. “Physical and Chemical Analysis of Canteen Wastes for Syngas Production.” Materials Science and Engineering 39 (2): 59–67.
  • Naik, S. N., V. V. Goud, P. K. Rout, and A. K. Dalai. 2010. “Production of First and Second Generation Biofuels: A Comprehensive Review.” Renewable and Sustainable Energy Reviews 14: 578–597. doi: 10.1016/j.rser.2009.10.003
  • Nanda, S., J. Isen, A. K. Dalai, and J. A. Kozinski. 2016. “Gasification of Fruit Wastes and Agro-Food Residues in Supercritical Water.” Energy Conversion and Management 110: 296–306. doi: 10.1016/j.enconman.2015.11.060
  • Nath, K., and D. Das. 2004. “Improvement of Fermentative Hydrogen Production: Various Approaches.” Applied Microbiology and Biotechnology 65: 520–529. doi: 10.1007/s00253-004-1644-0
  • Nigam, P. S., and A. Anoop Singh. 2011. “Production of Liquid Biofuels from Renewable Resources.” Progress in Energy and Combustion Science 37: 52–68. doi: 10.1016/j.pecs.2010.01.003
  • Onal, E. P., B. B. Uzun, and A. E. Putun. 2011. “Steam Pyrolysis of an Industrial Waste for Bio-Oil Production.” Fuel Processing Technology 92: 879–885. doi: 10.1016/j.fuproc.2010.12.006
  • Ouda, O. K. M., S. A. Raza, A. S. Nizami, M. Rehan, R. Al-Waked, and N. E. Korres. 2016. “Waste to Energy Potential: A Case Study of Saudi Arabia.” Renewable and Sustainable Energy Reviews 61: 328–340. doi: 10.1016/j.rser.2016.04.005
  • Pan, J., R. Zhang, H. M. El-Mashadb, H. Sun, and Y. Ying. 2008. “Effect of Food to Microorganism Ratio on Biohydrogen Production from Food Waste via Anaerobic Fermentation.” International Journal of Hydrogen Energy 33: 6968–6975. doi: 10.1016/j.ijhydene.2008.07.130
  • Parfitt, J., M. Barthel, and S. Macnaughton. 2010. “Food Waste Within Food Supply Chains: Quantification and Potential for Change to 2050.” Philosophical Transactions of the Royal Society B: Biological Sciences 365: 3065–3081. doi: 10.1098/rstb.2010.0126
  • Pham, T. P. T., R. Kaushik, G. K. Parshetti, R. Mahood, and R. Balasubramanian. 2015. “Food Waste-to-Energy Conversion Technologies: Current Status and Future Directions.” Waste Management 38: 399–408. doi: 10.1016/j.wasman.2014.12.004
  • Pourali, M. 2010. “Application of Plasma Gasification Technology in Waste to Energy Challenges and Opportunities.” IEEE Transactions on Sustainable Energy 1 (3): 125–130. doi: 10.1109/TSTE.2010.2061242
  • Ramke, H. G., D. Blohse, H. J. Lehmann, and J. Fettig. 2009. “Hydrothermal Carbonization of Organic Waste”. 12th International Waste Management and Landfill Symposium, Sardinia, Italy, 14 Pages.
  • Reynolds, W. D., C. F. Drury, C. S. Tan, and X. M. Yang. 2015. “Temporal Effects of Food Waste Compost on Soil Physical Quality and Productivity.” Canadian Journal of Soil Science 95 (3): 251–268. doi: 10.4141/cjss-2014-114
  • Ringer, M., V. Putsche, and J. Scahill. 2006. “Technical Report – Large-Scale Pyrolysis Oil NREL/TP-510-37779 Production: A Technology Assessment and Economic Analysis” National Renewable Energy Laboratory, NREL/TP-510-37779, 93 Pages.
  • Ruj, B., and S. Ghosh. 2014. “Technological Aspects for Thermal Plasma Treatment of Municipal Solid Waste – A Review.” Fuel Processing Technology 126: 298–308. doi: 10.1016/j.fuproc.2014.05.011
  • Russ, W., and R. Meyer-Pittroff. 2004. “Utilizing Waste Products from the Food Production and Processing Industries.” Critical Reviews in Food Science and Nutrition 44 (1): 57–62. doi: 10.1080/10408690490263783
  • Sarkar, N., S. K. Ghosh, S. Bannerjee, and K. Aikat. 2012. “Bioethanol Production from Agricultural Wastes: An Overview.” Renewable Energy 37: 19–27. doi: 10.1016/j.renene.2011.06.045
  • Schaub, S. M., and J. J. Leonard. 1996. “Composting: An Alternative Waste Management Option for Food Processing Industries.” Trends in Food Science & Technology 7: 263–268. doi: 10.1016/0924-2244(96)10029-7
  • Sharholy, M., K. Ahmad, G. Mahmood, and R. C. Trivedi. 2008. “Municipal Solid Waste Management in Indian Cities – A Review.” Waste Management 28: 459–467. doi: 10.1016/j.wasman.2007.02.008
  • Sharma, M., Shivani Dubey, Gajanan Darwhekar, and Sudhir Kumar Jain. 2015. “The Diverse Applications of Plasma.” AIP Conference Proceedings 1670: 030027-1–4.
  • Shie, J. L., C. Y. Chang, W. K. Tu, Y. C. Yang, Y. K. Liao, C. C. Tzeng, H. Y. Li, Y. J. Yu, C. H. Kuo, and L. C. Chang. 2008. “Major Products Obtained from Plasma Torch Pyrolysis of Sunflower-Oil Cake.” Energy Fuels 22 (1): 75–82. doi: 10.1021/ef700301v
  • Shin, S. G., G. Han, J. Lee, K. Cho, E. J. Jeon, C. Lee, and S. Hwang. 2015. “Characterization of Food Waste-Recycling Wastewater as Biogas Feedstock.” Bioresource Technology 196: 200–208. doi: 10.1016/j.biortech.2015.07.089
  • Spokas, K. A., K. B. Cantrell, J. R. M. Novak, D. W. Archer, J. A. Ippolito, H. P. Collins, A. A. Boateng, et al. 2012. “Biochar: A Synthesis of Its Agronomic Impact Beyond Carbon Sequestration.” Journal of Environment Quality 41: 973–989. doi: 10.2134/jeq2011.0069
  • Stabnikova, O., H. B. Ding, J. H. Tay, and J. Y. Wang. 2005. “Biotechnology for Aerobic Conversion of Food Waste into Organic Fertilizer.” Waste Management & Research 23: 39–47. doi: 10.1177/0734242X05049768
  • Subramani, V., and S. K. Gangwal. 2008. “A Review of Recent Literature to Search for an Efficient Catalytic Process for the Conversion of Syngas to Ethanol.” Energy & Fuels 22: 814–839. doi: 10.1021/ef700411x
  • Subramaniam, R., S. Dufreche, M. Zappi, and R. Bajpai. 2010. “Microbial Lipids from Renewable Resources: Production and Characterization.” Journal of Industrial Microbiology and Biotechnology 37: 1271–1287. doi: 10.1007/s10295-010-0884-5
  • Sundberg, C., D. Yu, I. Franke-Whittle, S. Kauppi, S. Smars, H. Insam, M. Romantschuk, and H. Jonsson. 2013. “Effects of pH and Microbial Composition on Odour in Food Waste Composting.” Waste Management 33: 204–211. doi: 10.1016/j.wasman.2012.09.017
  • Tanaka, M., H. Ozaki, A. Ando, S. Kambara, and H. Moritomi. 2008. ““Basic Characteristics of Food Waste and Food Ash on Steam Gasification.” Industrial and Engineering Chemistry Research 47: 2414–2419. doi: 10.1021/ie0612966
  • Themelis, N. J., and A. M. Vardelle. 2016. “Plasma-Assisted Waste-to-Energy Processes.” Renewable Energy Systems, 1377–1392. doi:https://doi.org/10.1007/978-1-4614-5820-3_407.
  • Thi, N. B. D., G. Kumar, and C. Y. Lin. 2015. “An Overview of Food Waste Management in Developing Countries: Current Status and Future Perspective.” Journal of Environmental Management 157: 220–229. doi: 10.1016/j.jenvman.2015.04.022
  • United Nations Environment Programme. 2015. “Global Waste Management Outlook” Rio+20 Summit, ISBN: 978-92-807-3479-9, 346 Pages.
  • Valkenburg, C., M. A. Gerber, C. W. Walton, S. B. Jones, B. L. Thompson, and D. J. Stevens. 2008. “Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology” U.S. Department of Energy, PNNL-18144, 43 Pages.
  • Wang, S., and Y. Zeng. 2017. “Ammonia Emission Mitigation in Food Waste Composting: A Review.” Bioresource Technology. doi:10.1016/j.biortech.2017.07.050.
  • Wang, X., and Y. C. Zhao. 2009. “A Bench Scale Study of Fermentative Hydrogen and Methane Production from Food Waste in Integrated Two-Stage Process.” International Journal of Hydrogen Energy 34: 245–254. doi: 10.1016/j.ijhydene.2008.09.100
  • Weber, C., A. Farwick, F. Benisch, D. Brat, H. Dietz, T. Subtil, and E. Boles. 2010. “Trends and Challenges in the Microbial Production of Lignocellulosic Bioalcohol Fuels.” Applied Microbiology and Biotechnology 87 (4): 1303–1315. doi: 10.1007/s00253-010-2707-z
  • Woolf, D., J. E. Amonette, F. A. Street-Perrott, J. Lehmann, and S. Joseph. 2010. “Sustainable Biochar to Mitigate Global Climate Change.” Nature Communications 1 (56): 1–9. doi: 10.1038/ncomms1053
  • Xu, J., W. Du, X. Zhao, G. Zhang, and D. Liu. 2013. “Microbial Oil Production from Various Carbon Sources and Its Use for Biodiesel Preparation.” Biofuels, Bioproducts and Biorefining 7: 65–77. doi: 10.1002/bbb.1372
  • Yan, S., X. Chen, J. Wu, and P. Wang. 2012. “Ethanol Production from Concentrated Food Waste Hydrolysates with Yeast Cells Immobilized on Corn Stalk.” Applied Microbiology and Biotechnology 94: 829–838. doi: 10.1007/s00253-012-3990-7
  • Yasin, N. H. M., T. Mumtaz, M. A. Mohd Ali Hassan, and N. A. Rahman. 2013. “Food Waste and Food Processing Waste for Biohydrogen Production: A Review.” Journal of Environmental Management 130: 375–385. doi: 10.1016/j.jenvman.2013.09.009
  • Yasin, N. H. M., N. A. Rahman, H. C. Man, M. Z. M. Yusoff, and M. A. Hassan. 2011. “Microbial Characterization of Hydrogen-Producing Bacteria in Fermented Food Waste at Different pH Values.” International Journal of Hydrogen Energy 36: 9571–9580. doi: 10.1016/j.ijhydene.2011.05.048
  • Zhang, R., H. M. El-Mashad, K. Hartman, F. Wang, G. Liu, C. Choate, and P. Gamble. 2007. “Characterization of Food Waste as Feedstock for Anaerobic Digestion.” Bioresource Technology 98: 929–935. doi: 10.1016/j.biortech.2006.02.039
  • Zhang, C., H. Su, J. Baeyens, and T. Tan. 2014. “Reviewing the Anaerobic Digestion of Food Waste for Biogas Production.” Renewable and Sustainable Energy Reviews 38: 383–392. doi: 10.1016/j.rser.2014.05.038
  • Zhang, C., G. Xiao, L. Peng, H. Su, and T. Tan. 2013. “The Anaerobic Co-Digestion of Food Waste and Cattle Manure.” Bioresource Technology 129: 170–176. doi: 10.1016/j.biortech.2012.10.138

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.