251
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Technical barriers and their solutions for deployment of HCCI engine technologies – a review

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 1922-1935 | Received 03 Jan 2019, Accepted 13 Apr 2019, Published online: 16 May 2019

References

  • Abdul Gafoor, C. P., and R. Gupta. 2015. “Numerical Investigation of Piston Bowl Geometry and Swirl Ratio on Emission From Diesel Engines.” Energy Conversion and Management 101: 541–551. doi:https://doi.org/10.1016/j.enconman.2015.06.007.
  • Akagawa, H., T. Miyamoto, A. Harada, S. Sasaki, N. Shimazaki, T. Hashizume, and K. Tsujimura. 1999. Approaches to Solve Problems of the Premixed Lean Diesel Combustion. SAE Technical Paper.
  • Angelos, J., M. Puignou, M. Andreae, W. Cheng, W. Green, and M. Singer. 2008. “Detailed Chemical Kinetic Simulations of Homogeneous Charge Compression Ignition Engine Transients.” International Journal of Engine Research 9 (2): 149–164.
  • Antunes, J. G., R. Mikalsen, and A. Roskilly. 2008. “An Investigation of Hydrogen-Fuelled HCCI Engine Performance and Operation.” International Journal of Hydrogen Energy 33 (20): 5823–5828.
  • Aoyama, T., Y. Hattori, J. I. Mizuta, and Y. Sato. 1996. An Experimental Study on Premixed-Charge Compression Ignition Gasoline Engine. SAE Technical paper.
  • Aroonsrisopon, T., P. Werner, J. O. Waldman, V. Sohm, D. E. Foster, T. Morikawa, and M. Iida. 2004. Expanding the HCCI Operation with the Charge Stratification. SAE Technical Paper.
  • Bahri, B., M. Shahbakhti, and A. A. Aziz. 2017. “Real-time Modeling of Ringing in HCCI Engines Using Artificial Neural Networks.” Energy 125: 509–518. doi:https://doi.org/10.1016/j.energy.2017.02.137.
  • Bendu, H., and S. Murugan. 2014. “Homogeneous Charge Compression Ignition (HCCI) Combustion: Mixture Preparation and Control Strategies in Diesel Engines.” Renewable and Sustainable Energy Reviews 38: 732–746. doi:https://doi.org/10.1016/j.rser.2014.07.019.
  • Bielaczyc, P., J. Merkisz, and J. Pielecha. 2001a. A Method of Reducing the Exhaust Emissions from Di Diesel Engines by the Introduction of a Fuel Cut Off System During Cold Start. SAE Technical Paper.
  • Bielaczyc, P., J. Merkisz, and J. Pielecha. 2001b. Investigation of Exhaust Emissions from DI Diesel Engine During Cold and Warm Start. SAE Technical Paper.
  • Boyarski, N. J., and R. D. Reitz. 2006. Premixed Compression Ignition (PCI) Combustion with Modeling-Generated Piston Bowl Geometry in a Diesel Engine. SAE Technical Paper.
  • Burton, J. L., D. R. Williams, W. J. Glewen, M. J. Andrie, R. B. Krieger, and D. E. Foster. 2009. Investigation of Transient Emissions and Mixed Mode Combustion for a Light Duty Diesel Engine. SAE Technical Paper.
  • Burtscher, H. 2005. “Physical Characterization of Particulate Emissions from Diesel Engines: A Review.” Journal of Aerosol Science 36 (7): 896–932. doi:https://doi.org/10.1016/j.jaerosci.2004.12.001.
  • Canova, M., F. Chiara, J. Cowgill, S. Midlam-Mohler, Y. Guezennec, and G. Rizzoni. 2007. Experimental Characterization of Mixed-Mode HCCI/DI Combustion on a Common Rail Diesel Engine. SAE Technical Paper.
  • Cao, L., A. Bhave, H. Su, S. Mosbach, M. Kraft, A. Dris, and R. M. McDavid. 2009. “Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions.” SAE International Journal of Engines 2 (2009-01-1102): 1019–1033.
  • Chen, H., J. He, and X. Zhong. 2018. “Engine Combustion and Emission Fuelled with Natural gas: A Review.” Journal of the Energy Institute. doi:https://doi.org/10.1016/j.joei.2018.06.005.
  • Chen, R., N. Milovanovic, J. Turner, and D. Blundell. 2003. The Thermal Effect of Internal Exhaust Gas Recirculation on Controlled Auto Ignition.
  • Chintala, V., P. Godkhe, S. Phadtare, M. Tadpatrikar, J. K. Pandey, and S. Kumar. 2018. “A Comparative Assessment of Single Cylinder Diesel Engine Characteristics with Plasto-Oils Derived From Municipal Mixed Plastic Waste.” Energy Conversion and Management 166: 579–589. doi:https://doi.org/10.1016/j.enconman.2018.04.068.
  • Chintala, V., S. Kumar, and J. K. Pandey. 2017. “Assessment of Performance, Combustion and Emission Characteristics of a Direct Injection Diesel Engine with Solar Driven Jatropha Biomass Pyrolysed oil.” Energy Conversion and Management 148: 611–622. doi:https://doi.org/10.1016/j.enconman.2017.05.043.
  • Chintala, V., and K. A. Subramanian. 2014a. “Experimental Investigation on Effect of Enhanced Premixed Charge on Combustion Characteristics of a Direct Injection Diesel Engine.” International Journal of Advances in Engineering Sciences and Applied Mathematics 6 (1-2): 3–16. doi:https://doi.org/10.1007/s12572-014-0109-7.
  • Chintala, V., and K. A. Subramanian. 2014b. “Hydrogen Energy Share Improvement Along with NOx (Oxides of Nitrogen) Emission Reduction in a Hydrogen Dual-Fuel Compression Ignition Engine Using Water Injection.” Energy Conversion and Management 83: 249–259. doi:https://doi.org/10.1016/j.enconman.2014.03.075.
  • Chintala, V., and K. A. Subramanian. 2015a. “An Effort to Enhance Hydrogen Energy Share in a Compression Ignition Engine Under Dual-Fuel Mode Using low Temperature Combustion Strategies.” Applied Energy 146: 174–183. doi:https://doi.org/10.1016/j.apenergy.2015.01.110.
  • Chintala, V., and K. A. Subramanian. 2015b. “Experimental Investigations on Effect of Different Compression Ratios on Enhancement of Maximum Hydrogen Energy Share in a Compression Ignition Engine Under Dual-Fuel Mode.” Energy 87: 448–462. doi:https://doi.org/10.1016/j.energy.2015.05.014.
  • Chintala, V., and K. A. Subramanian. 2016a. “CFD Analysis on Effect of Localized in-Cylinder Temperature on Nitric Oxide (NO) Emission in a Compression Ignition Engine Under Hydrogen-Diesel Dual-Fuel Mode.” Energy 116 (Part 1)): 470–488. doi:https://doi.org/10.1016/j.energy.2016.09.133.
  • Chintala, V., and K. A. Subramanian. 2016b. “Experimental Investigation of Hydrogen Energy Share Improvement in a Compression Ignition Engine Using Water Injection and Compression Ratio Reduction.” Energy Conversion and Management 108: 106–119. doi:https://doi.org/10.1016/j.enconman.2015.10.069.
  • Chintala, V., and K. A. Subramanian. 2017a. “A Comprehensive Review on Utilization of Hydrogen in a Compression Ignition Engine Under Dual Fuel Mode.” Renewable and Sustainable Energy Reviews 70: 472–491. doi:https://doi.org/10.1016/j.rser.2016.11.247.
  • Chintala, V., and K. A. Subramanian. 2017b. “Experimental Investigation of Autoignition of Hydrogen-air Charge in a Compression Ignition Engine Under Dual-Fuel Mode.” Energy 138 (Supplement C): 197–209. doi:https://doi.org/10.1016/j.energy.2017.07.068.
  • Chistensen, M., and B. Johansson, 1999. Homogeneous Charge Compression Ignition with Water Injection. SAE (1999-01-0182).
  • Choi, D., P. C. Miles, H. Yun, and R. D. Reitz. 2005. “A Parametric Study of low-Temperature, Late-Injection Combustion in a HSDI Diesel Engine.” JSME International Journal Series B Fluids and Thermal Engineering 48 (4): 656–664.
  • Christensen, M., A. Hultqvist, and B. Johansson. 1999. Demonstrating the Multi Fuel Capability of a Homogeneous Charge Compression Ignition Engine with Variable Compression Ratio. SAE Technical Paper.
  • Christensen, M., B. Johansson, P. Amnéus, and F. Mauss. 1998. Supercharged Homogeneous Charge Compression Ignition. SAE Technical paper.
  • Christensen, M., and B. Johansson. 1998. Influence of Mixture Quality on Homogeneous Charge Compression Ignition. SAE Technical Paper.
  • Christensen, M., B. Johansson, and P. Einewall. 1997. Homogeneous Charge Compression Ignition (HCCI) Using Isooctane, Ethanol and Natural Gas-a Comparison with Spark Ignition Operation. SAE Technical Paper.
  • Christensen, M., B. Johansson, and A. Hultqvist. 2002. The Effect of Combustion Chamber Geometry on HCCI Operation. SAE Technical Paper.
  • Dec, J. E., and M. Sjöberg. 2004. Isolating the Effects of Fuel Chemistry on Combustion Phasing in an HCCI Engine and the Potential of Fuel Stratification for Ignition Control. SAE Technical Paper.
  • Dec, J. E., and Y. Yang. 2010. “Boosted HCCI for High Power Without Engine Knock and with Ultra-low NOx Emissions-Using Conventional Gasoline.” SAE International Journal of Engines 3 (1): 750–767.
  • Demers, D., and G. Walters. 1999. Guide to Exhaust Emission Control Options. BAeSAME, Bristol.
  • Dimitriou, P., M. Kumar, T. Tsujimura, and Y. Suzuki. 2018. “Combustion and Emission Characteristics of a Hydrogen-Diesel Dual-Fuel Engine.” International Journal of Hydrogen Energy 43 (29): 13605–13617. doi:https://doi.org/10.1016/j.ijhydene.2018.05.062.
  • Epa, U. 2004. Air Quality Criteria for Particulate Matter. US Environmental Protection Agency, Research Triangle Park.
  • Epping, K., S. Aceves, R. Bechtold, and J. E. Dec. 2002. The Potential of HCCI Combustion for High Efficiency and Low Emissions. SAE Technical Paper.
  • Faiz, A., C. S. Weaver, M. Walsh, S. Gautam, and L. Chan. 1997. Air Pollution from Motor Vehicles: Standards and Technologies for Controlling Emissions. Washington, DC: World Bank Group.
  • Feroskhan, M., S. Ismail, M. G. Reddy, and A. Sai Teja. 2018. “Effects of Charge Preheating on the Performance of a Biogas-Diesel Dual Fuel CI Engine.” Engineering Science and Technology, an International Journal 21 (3): 330–337. doi:https://doi.org/10.1016/j.jestch.2018.04.001.
  • Flowers, D., S. Aceves, C. Westbrook, J. Smith, and R. Dibble. 2001. “Detailed Chemical Kinetic Simulation of Natural gas HCCI Combustion: gas Composition Effects and Investigation of Control Strategies.” Journal of Engineering for gas Turbines and Power 123 (2): 433–439.
  • Ganesh, D., and G. Nagarajan. 2010. “Homogeneous Charge Compression Ignition (HCCI) Combustion of Diesel Fuel with External Mixture Formation.” Energy 35 (1): 148–157. doi:https://doi.org/10.1016/j.energy.2009.09.005.
  • Ganesh, D., G. Nagarajan, and M. Mohamed Ibrahim. 2008. “Study of Performance, Combustion and Emission Characteristics of Diesel Homogeneous Charge Compression Ignition (HCCI) Combustion with External Mixture Formation.” Fuel 87 (17-18): 3497–3503. doi:https://doi.org/10.1016/j.fuel.2008.06.010.
  • Gonca, G. 2014. “Investigation of the Effects of Steam Injection on Performance and NO Emissions of a Diesel Engine Running with Ethanol–Diesel Blend.” Energy Conversion and Management 77: 450–457.
  • Goryntsev, D. 2008. Large Eddy Simulation of the Flow and Mixing Field in an Internal Combustion Engine. Technische Universität.
  • Gowthaman, S., and A. P. Sathiyagnanam. 2018. “Analysis the Optimum Inlet air Temperature for Controlling Homogeneous Charge Compression Ignition (HCCI) Engine.” Alexandria Engineering Journal 57 (4): 2209–2214.
  • Gray, A. W. B., and T. W. Ryan. 1997. Homogeneous Charge Compression Ignition (HCCI) of Diesel Fuel. SAE Technical Paper.
  • Griffiths, J. F., and B. Whitaker. 2002. “Thermokinetic Interactions Leading to Knock During Homogeneous Charge Compression Ignition.” Combustion and Flame 131 (4): 386–399.
  • Guo, H., V. Hosseini, W. S. Neill, W. L. Chippior, and C. E. Dumitrescu. 2011. “An Experimental Study on the Effect of Hydrogen Enrichment on Diesel Fueled HCCI Combustion.” International Journal of Hydrogen Energy 36 (21): 13820–13830. doi:https://doi.org/10.1016/j.ijhydene.2011.07.143.
  • Hadia, F., S. Wadhah, H. Ammar, and O. Ahmed. 2017. “Investigation of Combined Effects of Compression Ratio and Steam Injection on Performance, Combustion and Emissions Characteristics of HCCI Engine.” Case Studies in Thermal Engineering 10 (November 2016): 262–271. doi:https://doi.org/10.1016/j.csite.2017.07.005.
  • Harada, A., N. Shimazaki, S. Sasaki, T. Miyamoto, H. Akagawa, and K. Tsujimura. 1998. The Effects of Mixture Formation on Premixed Lean Diesel Combustion Engine. SAE Technical Paper.
  • Haraldsson, G., P. Tunestål, B. Johansson, and J. Hyvönen. 2004. HCCI Closed-Loop Combustion Control Using Fast Thermal Management. SAE Technical Paper.
  • Hasan, M. M., and M. M. Rahman. 2016. “Homogeneous Charge Compression Ignition Combustion: Advantages Over Compression Ignition Combustion, Challenges and Solutions.” Renewable and Sustainable Energy Reviews 57: 282–291. doi:https://doi.org/10.1016/j.rser.2015.12.157.
  • Hassan, A. O., A. Abu-jrai, A. a. H. Al-Muhatseb, and F. Jamil. 2017. “Impact of EGR and Engine Speed on HCCI Engine Performance and Tail Pipe Emissions.” Energy Procedia 136: 208–212. doi:https://doi.org/10.1016/j.egypro.2017.10.321.
  • Herold, R., J. Krasselt, D. E. Foster, J. Ghandhi, D. Reuss, and P. Najt. 2009. “Investigations Into the Effects of Thermal and Compositional Stratification on HCCI Combustion–Part II: Optical Engine Results.” SAE International Journal of Engines 2 (1): 1034–1053.
  • Heywood, J. B. 1988. Internal Combustion Engine Fundamentals. Vol. 930. New York: Mcgraw-hill.
  • Hoekman, S. K., and C. Robbins. 2012. “Review of the Effects of Biodiesel on NOx Emissions.” Fuel Processing Technology 96: 237–249.
  • Hosseini, V., W. S. Neill, and M. D. Checkel. 2009. “Controlling n-Heptane HCCI Combustion with Partial Reforming: Experimental Results and Modeling Analysis.” Journal of Engineering for Gas Turbines and Power 131 (5): 052801.
  • Hyvönen, J., G. Haraldsson, and B. Johansson. 2003. Operating Range in a Multi Cylinder HCCI Engine Using Variable Compression Ratio. SAE Technical paper.
  • Iwabuchi, Y., K. Kawai, T. Shoji, and Y. Takeda. 1999. Trial of New Concept Diesel Combustion System-Premixed Compression-Ignited Combustion. SAE Technical Paper.
  • Jaichandar, S., and K. Annamalai. 2012. “Influences of re-Entrant Combustion Chamber Geometry on the Performance of Pongamia Biodiesel in a DI Diesel Engine.” Energy 44 (1): 633–640.
  • Jennische, M. 2003. Closed-Loop Control of Start of Combustion in a Homogeneous Charge Compression Ignition Engine. In international congress and exposition.
  • Jun, D., K. Ishii, and N. Iida. 2003. “Autoignition and Combustion of Natural gas in a 4 Stroke HCCI Engine.” JSME International Journal Series B Fluids and Thermal Engineering 46 (1): 60–67.
  • Kakaee, A.-H., A. Nasiri-Toosi, B. Partovi, and A. Paykani. 2016. “Effects of Piston Bowl Geometry on Combustion and Emissions Characteristics of a Natural gas/Diesel RCCI Engine.” Applied Thermal Engineering 102: 1462–1472.
  • Kanda, T., T. Hakozaki, T. Uchimoto, J. Hatano, N. Kitayama, and H. Sono. 2005. PCCI Operation with Early Injection of Conventional Diesel Fuel. SAE Technical Paper.
  • Karthikeya Sharma, T., G. Amba Prasad Rao, and K. Madhu Murthy. 2015a. “Effective Reduction of in-Cylinder Peak Pressures in Homogeneous Charge Compression Ignition Engine – A Computational Study.” Alexandria Engineering Journal 54 (3): 373–382. doi:https://doi.org/10.1016/j.aej.2015.04.006.
  • Karthikeya Sharma, T., G. Amba Prasad Rao, and K. Madhu Murthy. 2015b. “Effective Reduction of NOx Emissions of a HCCI (Homogeneous Charge Compression Ignition) Engine by Enhanced Rate of Heat Transfer Under Varying Conditions of Operation.” Energy 93: 2102–2115. doi:https://doi.org/10.1016/j.energy.2015.10.083.
  • Kasseris, E. P. 2006. Comparative Analysis of Automotive Powertrain Choices for the Near to Mid-Term Future. Massachusetts Institute of Technology.
  • Kim, M. Y., and C. S. Lee. 2007. “Effect of a Narrow Fuel Spray Angle and a Dual Injection Configuration on the Improvement of Exhaust Emissions in a HCCI Diesel Engine.” Fuel 86 (17): 2871–2880.
  • Kimura, S., O. Aoki, H. Ogawa, S. Muranaka, and Y. Enomoto. 1999. New Combustion Concept for Ultra-Clean and High-Efficiency Small DI diesel Engines. SAE Technical Paper.
  • Kittelson, D. B. 1998. “Engines and Nanoparticles: a Review.” Journal of Aerosol Science 29 (5-6): 575–588.
  • Kökkülünk, G., A. Parlak, E. Bağci, and Z. Aydin. 2014. “Application of Taguchi Methods for the Optimization of Factors Affecting Engine Performance and Emission of Exhaust gas Recirculation in Steam-Injected Diesel Engines.” Acta Polytechnica Hungarica 11 (5): 95–107.
  • Kong, S.-C., and R. D. Reitz. 2002. “Use of Detailed Chemical Kinetics to Study HCCI Engine Combustion with Consideration of Turbulent Mixing Effects.” Journal of Engineering for gas Turbines and Power 124 (3): 702–707.
  • Kook, S., C. Bae, P. C. Miles, D. Choi, and L. M. Pickett. 2005. The Influence of Charge Dilution and Injection Timing on Low-Temperature Diesel Combustion and Emissions. SAE Technical Paper.
  • Kraft, M., P. Maigaard, F. Mauss, M. Christensen, and B. Johansson. 2000. “Investigation of Combustion Emissions in a Homogeneous Charge Compression Injection Engine: Measurements and a new Computational Model.” Proceedings of the Combustion Institute 28 (1): 1195–1201.
  • Krasselt, J., D. E. Foster, J. Ghandhi, R. Herold, D. Reuss, and P. Najt. 2009. Investigations into the Effects of Thermal and Compositional Stratification on HCCI Combustion–Part I: Metal Engine Results. SAE Technical Paper.
  • Kumano, K., and N. Iida. 2004. Analysis of the Effect of Charge Inhomogeneity on HCCI Combustion by Chemiluminescence Measurement. SAE Technical Paper.
  • Kumar, J. T. S., T. K. Sharma, K. M. Murthy, and G. A. P. Rao. 2018a. “Effect of Reformed EGR on the Performance and Emissions of a Diesel Engine: A Numerical Study.” Alexandria Engineering Journal 57 (2): 517–525. doi:https://doi.org/10.1016/j.aej.2017.01.008.
  • Kumar, M., T. Tsujimura, and Y. Suzuki. 2018b. “NOX Model Development and Validation with Diesel and Hydrogen/Diesel Dual-Fuel System on Diesel Engine.” Energy 145: 496–506. doi:https://doi.org/10.1016/j.energy.2017.12.148.
  • Laguitton, O., C. Crua, T. Cowell, M. R. Heikal, and M. R. Gold. 2007. “The Effect of Compression Ratio on Exhaust Emissions From a PCCI Diesel Engine.” Energy Conversion and Management 48 (11): 2918–2924. doi:https://doi.org/10.1016/j.enconman.2007.07.016.
  • Law, D., D. Kemp, J. Allen, G. Kirkpatrick, and T. Copland. 2001. Controlled Combustion in an IC-Engine With a Fully Variable Valve Train. SAE Technical Paper.
  • Lee, T., J. Park, S. Kwon, J. Lee, and J. Kim. 2013. “Variability in Operation-Based NOx Emission Factors with Different Test Routes, and its Effects on the Real-Driving Emissions of Light Diesel Vehicles.” Science of the Total Environment 461: 377–385.
  • Lim, J., and K. Min. 2005. The Effects of Spray Angle And Piston Bowl Shape on Diesel Engine Soot Emissions Using 3-D CFD simulation. SAE Technical Paper.
  • Liu, H., Z. Zheng, M. Yao, P. Zhang, Z. Zheng, B. He, and Y. Qi. 2012. “Influence of Temperature and Mixture Stratification on HCCI Combustion Using Chemiluminescence Images and CFD Analysis.” Applied Thermal Engineering 33: 135–143.
  • Lü, X.-c., W. Chen, and Z. Huang. 2005. “A Fundamental Study on the Control of the HCCI Combustion and Emissions by Fuel Design Concept Combined with Controllable EGR. Part 2. Effect of Operating Conditions and EGR on HCCI Combustion.” Fuel 84 (9): 1084–1092.
  • Ma, J.,X. Lü, L. Ji, and Z. Huang. 2008. “An Experimental Study of HCCI-DI Combustion and Emissions in a Diesel Engine with Dual Fuel.” International Journal of Thermal Sciences 47 (9): 1235–1242. doi:https://doi.org/10.1016/j.ijthermalsci.2007.10.007.
  • Mack, J. H. 2007. Investigation of Homogeneous Charge Compression Ignition (HCCI) Engines Fuelled With Ethanol Blends Using Experiments And Numerical Simulations. University of California, Berkeley.
  • Manofsky, L., J. Vavra, D. N. Assanis, and A. Babajimopoulos. 2011. Bridging the Gap between HCCI and SI: Spark-Assisted Compression Ignition. SAE Technical Paper.
  • Mashkournia, M., A. Audet, and C. R. Koch. 2011. Knock Detection and Control in an HCCI Engine Using DWT. in ASME 2011 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers.
  • Mathivanan, K., J. Mallikarjuna, and A. Ramesh. 2016. “Influence of Multiple Fuel Injection Strategies on Performance and Combustion Characteristics of a Diesel Fuelled HCCI Engine–An Experimental Investigation.” Experimental Thermal and Fluid Science 77: 337–346.
  • Maurya, R. K., and A. K. Agarwal. 2011. “Experimental Investigation on the Effect of Intake air Temperature and air–Fuel Ratio on Cycle-to-Cycle Variations of HCCI Combustion and Performance Parameters.” Applied Energy 88 (4): 1153–1163. doi:https://doi.org/10.1016/j.apenergy.2010.09.027.
  • Maurya, R. K., and M. R. Saxena. 2018. “Characterization of Ringing Intensity in a Hydrogen-Fueled HCCI Engine.” International Journal of Hydrogen Energy 43 (19): 9423–9437. doi:https://doi.org/10.1016/j.ijhydene.2018.03.194.
  • Milovanovic, N., D. Blundell, R. Pearson, J. Turner, and R. Chen, 2005. Enlarging the Operational Range of a Gasoline HCCI Engine by Controlling the Coolant Temperature.
  • Murthy, Y. S., G. Sastry, and M. Satyanaryana. 2011. “Experimental Investigation of Performance and Emissions on low Speed Diesel Engine with Dual Injection of Solar Generated Steam and Pongamia Methyl Ester.” Indian Journal of Science and Technology 4 (1): 29–33.
  • Najt, P. M., and D. E. Foster. 1983. Compression-Ignited Homogeneous Charge Combustion. SAE Technical Paper.
  • Nakagome, K., N. Shimazaki, K. Niimura, and S. Kobayashi. 1997. Combustion and Emission Characteristics of Premixed Lean Diesel Combustion Engine. SAE technical paper.
  • Nathan, S. S., J. Mallikarjuna, and A. Ramesh. 2010. “An Experimental Study of the Biogas–Diesel HCCI Mode of Engine Operation.” Energy Conversion and Management 51 (7): 1347–1353.
  • Noguchi, M., Y. Tanaka, T. Tanaka, and Y. Takeuchi. 1979. A Study on Gasoline Engine Combustion by Observation of Intermediate Reactive Products During Combustion. SAE Technical Paper.
  • Okude, K., K. Mori, S. Shiino, and T. Moriya. 2004. Premixed Compression Ignition (PCI) Combustion for Simultaneous Reduction of NOx and Soot in Diesel Engine. SAE Technical Paper.
  • Olsson, J.-O., P. Tunestål, G. Haraldsson, and B. Johansson. 2001. A Turbo Charged Dual Fuel HCCI Engine. SAE Technical Paper.
  • Olsson, J.-O., P. Tunestål, B. Johansson, S. Fiveland, R. Agama, M. Willi, and D. N. Assanis. 2002. Compression Ratio Influence on Maximum Load of a Natural Gas Fueled HCCI Engine. SAE Technical Paper.
  • Olsson, J.-O., P. Tunestål, and B. Johansson. 2004. Boosting for High Load HCCI. SAE Technical Paper.
  • Paykani, A., R. K. Saray, M. Shervani-Tabar, and A. Mohammadi-Kousha. 2012. “Effect of Exhaust gas Recirculation and Intake pre-Heating on Performance and Emission Characteristics of Dual Fuel Engines at Part Loads.” Journal of Central South University 19 (5): 1346–1352.
  • Peng, Z., Y. Cui, L. Shi, and K. Deng. 2005. “Characteristics of Homogeneous Charge Compression Ignition (HCCI) Combustion and Emissions of n-Heptane.” Combustion Science and Technology 177 (11): 2113–2150.
  • Peng, H., H. Zhao, T. Ma, and N. Ladommatos. 2008. “Effects of Exhaust gas Recirculation (EGR) on Combustion and Emissions During Cold Start of Direct Injection (DI) Diesel Engine.” Energy 33 (3): 471–479. doi:https://doi.org/10.1016/j.energy.2007.10.014.
  • Peters, N., and J. Weber. 2006. The Effects of Spray Formation and Evaporation on Mixing, Auto-Ignition and Combustion in Diesel Engines. in THIESEL 2006 Conference on Thermo-and Fluid Dynamic Processes in Diesel Engines, Valencia, Spain.
  • Peucheret, S., M. Wyszy0144ski, R. Lehrle, S. Golunski, and H. Xu. 2005. “Use of Catalytic Reforming to aid Natural gas HCCI Combustion in Engines: Experimental and Modelling Results of Open-Loop Fuel Reforming.” International Journal of Hydrogen Energy 30 (15): 1583–1594.
  • Prasad, B., C. Sharma, T. Anand, and R. Ravikrishna. 2011. “High Swirl-Inducing Piston Bowls in Small Diesel Engines for Emission Reduction.” Applied Energy 88 (7): 2355–2367.
  • Prasad, R., and V. R. Bella. 2010. “A Review on Diesel Soot Emission, its Effect and Control.” Bulletin of Chemical Reaction Engineering & Catalysis 5 (2): 69.
  • Qian, Y., S. Sun, D. Ju, X. Shan, and X. Lu. 2017. “Review of the State-of-the-art of Biogas Combustion Mechanisms and Applications in Internal Combustion Engines.” Renewable and Sustainable Energy Reviews 69: 50–58. doi:https://doi.org/10.1016/j.rser.2016.11.059.
  • Ra, Y., R. D. Reitz, J. McFarlane, and C. S. Daw. 2009. “Effects of Fuel Physical Properties on Diesel Engine Combustion Using Diesel and bio-Diesel Fuels.” SAE International Journal of Fuels and Lubricants 1 (1): 703–718.
  • Richter, M., J. Engström, A. Franke, M. Aldén, A. Hultqvist, and B. Johansson. 2000. The Influence of Charge Inhomogeneity on the HCCI Combustion Process. SAE Technical Paper.
  • Rosha, P., A. Dhir, and S. K. Mohapatra. 2018. “Influence of Gaseous Fuel Induction on the Various Engine Characteristics of a Dual Fuel Compression Ignition Engine: A Review.” Renewable and Sustainable Energy Reviews 82: 3333–3349. doi:https://doi.org/10.1016/j.rser.2017.10.055.
  • Saito, T., Y. Daisho, N. Uchida, and N. Ikeya. 1986. Effects of Combustion Chamber Geometry on Diesel Combustion. SAE Technical Paper.
  • Saravanan, N., and G. Nagarajan. 2010. “An Experimental Investigation on Hydrogen Fuel Injection in Intake Port and Manifold with Different EGR Rates.” International Journal of Energy & Environment 1 (2): 221–248.
  • Saravanan, S., K. Pitchandi, and G. Suresh. 2015. “An Experimental Study on Premixed Charge Compression Ignition-Direct Ignition Engine Fueled with Ethanol and Gasohol.” Alexandria Engineering Journal 54 (4): 897–904. doi:https://doi.org/10.1016/j.aej.2015.07.010.
  • Sato, Y., H. Yanagihara, and J. I. Mizuta. 1996. “A Simultaneous Reduction of NOx and Soot in Diesel Engines Under a new Combustion System.” JSAE Review 4 (17): 454.
  • Saxena, S., and I. D. Bedoya. 2013. “Fundamental Phenomena Affecting low Temperature Combustion and HCCI Engines, High Load Limits and Strategies for Extending These Limits.” Progress in Energy and Combustion Science 39 (5): 457–488. doi:https://doi.org/10.1016/j.pecs.2013.05.002.
  • Saxena, S., J.-Y. Chen, and R. Dibble. 2011. Maximizing Power Output in an Automotive Scale Multi-Cylinder Homogeneous Charge Compression Ignition (HCCI) Engine. SAE Technical Paper.
  • Saxena, S., S. Schneider, S. Aceves, and R. Dibble. 2012. “Wet Ethanol in HCCI Engines with Exhaust Heat Recovery to Improve the Energy Balance of Ethanol Fuels.” Applied Energy 98: 448–457. doi:https://doi.org/10.1016/j.apenergy.2012.04.007.
  • Schwoerer, J., S. Dodi, M. Fox, S. Huang, and Z. Yang. 2004. Internal EGR Systems for NOx Emission Reduction in Heavy-Duty Diesel Engines. SAE Technical Paper.
  • Sharma, T. K., G. Rao, and K. M. Murthy. 2014. Prediction of HCCI Engine Performance with Three Zone Extended Coherent Flame Combustion Model. in Applied Mechanics and Materials. Trans Tech Publ.
  • Sharma, T. K., G. A. P. Rao, and K. M. Murthy. 2015. “Enhancement of Rate of Heat Transfer in HCCI Engine with Induction Induced Swirl and Under Varying Compression Ratios and Boost Pressures.” Journal of Mechanical Science and Technology 29 (10): 4545–4553.
  • Sharma, T. K., G. A. P. Rao, and K. M. Murthy. 2016. “Homogeneous Charge Compression Ignition (HCCI) Engines: A Review.” Archives of Computational Methods in Engineering 23 (4): 623–657. doi:https://doi.org/10.1007/s11831-015-9153-0.
  • Sheppard, C., S. Tolegano, and R. Woolley. 2002. On the Nature of Autoignition Leading to Knock in HCCI engines. SAE Technical Paper.
  • Shi, L., Y. Cui, K. Deng, H. Peng, and Y. Chen. 2006. “Study of low Emission Homogeneous Charge Compression Ignition (HCCI) Engine Using Combined Internal and External Exhaust gas Recirculation (EGR).” Energy 31 (14): 2665–2676.
  • Shim, E., H. Park, and C. Bae. 2018. “Intake air Strategy for low HC and CO Emissions in Dual-Fuel (CNG-Diesel) Premixed Charge Compression Ignition Engine.” Applied Energy 225: 1068–1077. doi:https://doi.org/10.1016/j.apenergy.2018.05.060.
  • Sjöberg, M., J. E. Dec, A. Babajimopoulos, and D. N. Assanis. 2004. Comparing Enhanced Natural Thermal Stratification Against Retarded Combustion Phasing for Smoothing of HCCI Heat-Release Rates. SAE Technical Paper.
  • Sjöberg, M., and J. E. Dec. 2005. Effects of Engine Speed, Fueling Rate, And Combustion Phasing On The Thermal Stratification Required to Limit HCCI Knocking Intensity. SAE Technical Paper.
  • Srivastava, D. K., A. K. Agarwal, and T. Gupta. 2011. “Effect of Engine Load on Size and Number Distribution of Particulate Matter Emitted From a Direct Injection Compression Ignition Engine.” Aerosol and Air Quality Resarch 11 (7): 915–920.
  • Starck, L., B. Lecointe, L. Forti, and N. Jeuland. 2010. “Impact of Fuel Characteristics on HCCI Combustion: Performances and Emissions.” Fuel 89 (10): 3069–3077.
  • Stone, R. 1999. Introduction to Internal Combustion Engines (Vol. 3). London: Macmillan.
  • Sugihara, H., H. Nakagawa, K. Shouyama, and A. Yamamoto. 1999. “Hino new K13C Diesel Engine Equipped with Common-Rail Type Fuel Injection Equipment.” Engine Technology 1 (04): 40–45.
  • Sun, R., R. Thomas, and C. L. Gray. 2004. An HCCI Engine: Power Plant for A Hybrid Vehicle. SAE Technical Paper.
  • Suzuki, T., T. Kakegawa, K. Hikino, and A. Obata. 1997. Development of Diesel Combustion for Commercial Vehicles. SAE Technical Paper.
  • Vavra, J., S. V. Bohac, L. Manofsky, G. Lavoie, and D. Assanis. 2012. “Knock in Various Combustion Modes in a Gasoline-Fueled Automotive Engine.” Journal of Engineering for Gas Turbines and Power 134 (8): 082807.
  • Vressner, A., A. Hultqvist, and B. Johansson. 2007. Study on Combustion Chamber Geometry Effects in an HCCI Engine Using High-Speed Cycle-Resolved Chemiluminescence Imaging. SAE Technical Paper.
  • Vressner, A., A. Lundin, M. Christensen, P. Tunestål, and B. Johansson. 2003. Pressure Oscillations During Rapid HCCI Combustion. SAE Technical Paper.
  • Wåhlin, F., A. Cronhjort, U. Olofsson, and H.-E. Ångström. 2004. Effect of Injection Pressure and Engine Speed on Air/Fuel Mixing and Emissions in a Pre-Mixed Compression Ignited (PCI) engine using diesel fuel. SAE Technical Paper.
  • Wang, Z., J.-X. Wang, S.-J. Shuai, G.-H. Tian, X. An, and Q.-J. Ma. 2006. “Study of the Effect of Spark Ignition on Gasoline HCCI Combustion. Proceedings of the Institution of Mechanical Engineers.” Part D: Journal of Automobile Engineering 220 (6): 817–825.
  • Weiss, M., J. Heywood, E. Drake, A. Schafer, and F. AuYeung. 2000. On the Road in 2020: A Life-Cycle Analysis of New Automobile Technologies, Energy Laboratory Report# MIT EL 00-003, Massachusetts Institute of Technology, Cambridge, MA, USA, October, 2000. Subject Index.
  • Westbrook, C. K., W. J. Pitz, and W. R. Leppard. 1991. “The Autoignition Chemistry of Paraffinic Fuels and pro-Knock and Anti-Knock Additives: a Detailed Chemical Kinetic Study.” SAE Transactions 100: 605–622.
  • Wildman, C., R. J. Scaringe, and W. Cheng. 2009. On the Maximum Pressure Rise Rate in Boosted HCCI Operation. SAE Technical Paper.
  • Wimmer, A., H. Eichlseder, M. Klell, and G. Figer. 2006. “Potential of HCCI Concepts for DI Diesel Engines.” International Journal of Vehicle Design 41 (1-4): 32–48.
  • Wu, C.-W., R.-H. Chen, J.-Y. Pu, and T.-H. Lin. 2004. “The Influence of air–Fuel Ratio on Engine Performance and Pollutant Emission of an SI Engine Using Ethanol–Gasoline-Blended Fuels.” Atmospheric Environment 38 (40): 7093–7100.
  • Wu, H.-W., R.-H. Wang, D.-J. Ou, Y.-C. Chen, and T.-y. Chen. 2011. “Reduction of Smoke and Nitrogen Oxides of a Partial HCCI Engine Using Premixed Gasoline and Ethanol with air.” Applied Energy 88 (11): 3882–3890.
  • Xu, H., T. Wilson, S. Richardson, M. Wyszynski, T. Megaritis, D. Yap, S. Golunski, and D. James. 2004. Extension of the Boundary of HCCI Combustion Using Fuel Reforming Technology, JSAE paper 20045468. in Japanese SAE Congress, Yokohama.
  • Yamaoka, S., H. Kakuya, S. Nakagawa, T. Okada, A. Shimada, and Y. Kihara. 2005. HCCI Operation Control in a Multi-Cylinder Gasoline Engine. SAE Technical Paper.
  • Yang, J. 2004. HCCI Engine Intake/Exhaust Systems for Fast Inlet Temperature and Pressure Control with Intake Pressure Boosting. 2004, Google Patents.
  • Yang, D.-b., Z. Wang, J.-X. Wang, and S.-j. Shuai. 2011a. “Experimental Study of Fuel Stratification for HCCI High Load Extension.” Applied Energy 88 (9): 2949–2954.
  • Yang, Y., J. E. Dec, N. Dronniou, and M. Sjöberg. 2011b. “Tailoring HCCI Heat-Release Rates with Partial Fuel Stratification: Comparison of two-Stage and Single-Stage-Ignition Fuels.” Proceedings of the Combustion Institute 33 (2): 3047–3055.
  • Yao, M., Z. Zheng, and H. Liu. 2009. “Progress and Recent Trends in Homogeneous Charge Compression Ignition (HCCI) Engines.” Progress in Energy and Combustion Science 35 (5): 398–437. doi:https://doi.org/10.1016/j.pecs.2009.05.001.
  • Yilmaz, I. T., and M. Gumus. 2018. “Effects of Hydrogen Addition to the Intake air on Performance and Emissions of Common Rail Diesel Engine.” Energy 142: 1104–1113. doi:https://doi.org/10.1016/j.energy.2017.10.018.
  • Yoon, S. H., H. J. Kim, and S. Park. 2018. “Study on Optimal Combustion Strategy to Improve Combustion Performance in a Single-Cylinder PCCI Diesel Engine with Different Combustion Chamber Geometry.” Applied Thermal Engineering 144: 1081–1090. doi:https://doi.org/10.1016/j.applthermaleng.2018.09.003.
  • Yoshioka, S., T. Matsuoka, S. Hamada, and H. Hinatase. 1987. Engine Intake System Having a Pressure Wave Supercharger. Google Patents.
  • Yu, R., X.-S. Bai, H. Lehtiniemi, S. Ahmed, F. Mauss, M. Richter, M. Aldén, L. Hildingsson, B. Johansson, and A. Hultqvist. 2006. Effect of Turbulence and Initial Temperature Inhomogeneity on Homogeneous Charge Compression Ignition Combustion. SAE Technical Paper.
  • Yu, R., T. Joelsson, X.-S. Bai, and B. Johansson. 2008. Effect of Temperature Stratification on the Auto-Ignition of Lean Ethanol/Air Mixture in HCCI Engine. SAE Technical Paper.
  • Yun, H., M. Sellnau, N. Milovanovic, and S. Zuelch. 2008. Development of Premixed Low-Temperature Diesel Combustion in a HSDI Diesel Engine. SAE Technical Paper.
  • Zheng, J., J. Wang, Z. Zhao, D. Wang, and Z. Huang. 2019. “Effect of Equivalence Ratio on Combustion and Emissions of a Dual-Fuel Natural gas Engine Ignited with Diesel.” Applied Thermal Engineering 146: 738–751. doi:https://doi.org/10.1016/j.applthermaleng.2018.10.045.
  • Zheng, M., M. C. Mulenga, G. T. Reader, M. Wang, D. S. Ting, and J. Tjong. 2008. “Biodiesel Engine Performance and Emissions in low Temperature Combustion.” Fuel 87 (6): 714–722.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.