114
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Enviro-economic analysis of a solar-assisted double-effect vapour absorption system based cold storage

ORCID Icon &
Pages 5366-5375 | Received 23 Jan 2019, Accepted 24 Jun 2021, Published online: 13 Jul 2021

References

  • Adedeji, M. J., T. L. Ruwa, M. Abid, T. A. H. Ratlamwala, and M. Dagbasi. 2017. “Energy, Exergy, Economic and Environmental Analysis of Photovoltaic Thermal Systems for Cooling Absorption Application.” Energy Procedia 142: 916–923. doi:10.1016/j.egypro.2017.12.147.
  • Agyenim, F., I. Knight, and M. Rhodes. 2010. “Design and Experimental Testing of the Performance of an Outdoor LiBr/H2O Solar Thermal Absorption Cooling System with a Cold Store.” Solar Energy 84 (5): 735–744. doi:10.1016/j.solener.2010.01.013.
  • Ahmadi, P., I. Dincer, and M. A. Rosen. 2014. “Multi-objective Optimization of a Novel Solar-Based Multigeneration Energy System.” Solar Energy 108: 576–591. doi:10.1016/j.solener.2014.07.022.
  • Akter, M. N., M. A. Mahmud, and A. M. T. Oo. 2017. “Comprehensive Economic Evaluations of a Residential Building with Solar Photovoltaic and Battery Energy Storage Systems: An Australian Case Study.” Energy and Buildings 138 (1): 332–346. doi:10.1016/j.enbuild.2016.12.065.
  • Arora, A., and S. C. Kaushik. 2009. “Theoretical Analysis of LiBr/H2O Absorption Refrigeration Systems.” International Journal of Energy Research 33: 1321–1340. doi:10.1002/er.1542.
  • Balghouthi, M., M. H. Chahbani, and A. Guizani. 2012. “Investigation of a Solar Cooling Installation in Tunisia.” Applied Energy 98: 138–148. doi:10.1016/j.apenergy.2012.03.017.
  • Balyani, H. H., A. Sohani, H. Sayyaadi, and R. Karami. 2015. “Acquiring the Best Cooling Strategy Based on Thermal Comfort and 3E Analyses for Small Scale Residential Buildings at Diverse Climatic Conditions.” International Journal of Refrigeration 57: 112–137. doi:10.1016/j.ijrefrig.2015.04.008.
  • Barnwal, P., and G. N. Tiwari. 2008. “Life Cycle Cost Analysis of a Hybrid Photovoltaic/Thermal Greenhouse Dryer.” Open Environmental Sciences 2: 39–46.
  • Basu, D. N., and A. Ganguly. 2015. “Conceptual Design and Performance Analysis of a Solarthermal-Photovoltaic-Powered Absorption Refrigeration System.” Journal of Solar Energy Engineering 137: 31020–31029. doi:10.1016/j.apenergy.2015.12.070.
  • Basu, D. N., and A. Ganguly. 2016. “Solar Thermal–Photovoltaic Powered Potato Cold Storage–Conceptual Design and Performance Analyses.” Applied Energy 165 (1): 308–317. doi:10.1016/j.apenergy.2015.12.070.
  • Bellos, E., C. Tzivanidis, C. Symeou, and K. A. Antonopoulos. 2017. “Energetic, Exergetic and Financial Evaluation of a Solar Driven Absorption Chiller –A Dynamic Approach.” Energy Conversion and Management 137 (1): 34–48. doi:10.1016/j.enconman.2017.01.041.
  • Betanzo, C. C., H. Calleja, and S. D. Leon-Aldaco. 2018. “Module Temperature Models Assessment of Photovoltaic Seasonal Energy Yield.” Sustainable Energy Technologies and Assessments 27: 9–16. doi:10.1016/j.seta.2018.03.005.
  • CESC Tariff. 2016. Accessed January 10, 2018. https://www.cesc.co.in/wpcontent/uploads/tariff/TARIFF%20AND%20ASSOCIATED%20CONDITIONS.pdf.
  • De, R. K., and A. Ganguly. 2016. “Thermal Model Development and Performance Analysis of a Solar Photovoltaic Supported Greenhouse Dryer.” International Journal of Renewable Energy Technology 7: 361–382. doi:10.1504/IJRET.2016.080116.
  • De, R. K., and A. Ganguly. 2019. “Energy and Economic Analysis of a Solar Supported Multi-Commodity Cold Storage.” Journal of the Brazilian Society of Mechanical Sciences and Engineering 41: 1–17. doi:10.1007/s40430-019-1893-6.
  • De, R. K., and A. Ganguly. 2020. “Performance Comparison of Solar-Driven Single and Double-Effect LiBr-Water Vapour Absorption System Based Cold Storage.” Thermal Science and Engineering Progress 17: 1–12. doi:10.1016/j.tsep.2020.100488.
  • De, R. K., and A. Ganguly. 2021. “Modeling and Analysis of a Solar Thermal-Photovoltaic-Hydrogen-Based Hybrid Power System for Running a Standalone Cold Storage.” Journal of Cleaner Production 293: 1–15. doi:10.1016/j.jclepro.2021.126202.
  • Demand Analysis for Cooling by Sector in India in 2027. 2018. Accessed December 30, 2018. https://www.energyforum.in/fileadmin/user_upload/india/media_elements/publications/10_Cooling_Demand_AEEE.pdf.
  • Dincer, I., O. Kizilkan, and A. Kabul. 2016. “Development and Performance Assessment of a Parabolic Trough Solar Collector-Based Integrated System for an Ice-Cream Factory.” Energy 100 (1): 167–176. doi:10.1016/j.energy.2016.01.098.
  • Elsafty, A., and A. J. Al-Daini. 2002. “Economical Comparison Between a Solar-Powered Vapour Absorption Air-Conditioning System and a Vapour Compression System in the Middle East.” Renewable Energy 25 (4): 569–583. doi:10.1016/S0960-1481(01)00078-7.
  • Florides, G. A., S. A. Kalogirou, S. A. Tassou, and L. C. Wrobel. 2003. “Design and Construction of a LiBr–Water Absorption Machine.” Energy Conversion and Management 44: 2483–2508. doi:10.1016/S0196-8904(03)00006-2.
  • Ganguly, A., and R. K. De. 2018. “Conceptual Design and Performance Analysis of a Parabolic Trough Collector Supported Multi-Commodity Cold Storage.” IOP Conference Series: Materials Science and Engineering 402 (012049): 1–10. doi:10.1088/1757-899X/402/1/012049.
  • Ghorbani, B., M. Mehrpooya, and M. Sadeghzadeh. 2020. “Process Development of a Solar-Assisted Multi-Production Plant: Power, Cooling, and Hydrogen.” International Journal of Hydrogen Energy 45: 30056–30079. doi:10.1016/j.ijhydene.2020.08.018.
  • Hamed, A., S. A. Kaseb, and A. S. Hanafi. 2015. “Prediction of Energetic and Exergetic Performance of Double-Effect Absorption System.” International Journal of Hydrogen Energy 44 (5): 1–8. doi:10.1016/j.ijhydene.2015.05.150.
  • Hmida, A., N. Chekir, A. Laafer, M. E. A. Slimani, and A. B. Brahim. 2019. “Modeling of Cold Room Driven by an Absorption Refrigerator in the South of Tunisia: A Detailed Energy and Thermodynamic Analysis.” Journal of Cleaner Production 211: 1239–1249. doi:10.1016/j.jclepro.2018.11.219.
  • IEA (International Energy Agency). 2018. Accessed December 30, 2018. https://en.wikipedia.org/wiki/Electricity_generation.
  • Jain, V., G. Sachdeva, S. S. Kachhwaha, and B. Patel. 2016. “Thermo-economic and Environmental Analyses Based Multi-Objective Optimization of Vapour Compression–Absorption Cascaded Refrigeration System Using NSGA-II Technique.” Energy Conversion and Management 113 (1): 230–242. doi:10.1016/j.enconman.2016.01.056.
  • Liu, Y. L., and R. Z. Wang. 2004. “Performance Prediction of a Solar/Gas Driving Double Effect LiBr–H2O Absorption System.” Renewable Energy 29: 1677–1695. doi:10.1016/j.renene.2004.01.016.
  • Lizarte, R., M. Izquierdo, J. D. Marcos, and E. Palacios. 2012. “An Innovative Solar-Driven Directly Air-Cooled LiBr–H2O Absorption Chiller Prototype for Residential Use.” Energy and Buildings 47: 1–11. doi:10.1016/j.enbuild.2011.11.011.
  • Muzet, M. P., J. P. Bedecarrats, P. Stouffs, and J. C. Lasvignottes. 2014. “Design and Dynamic Behaviour of a Cold Storage System Combined with a Solar Powered Thermoacoustic Refrigerator.” Applied Thermal Engineering 68 (1–2): 115–124. doi:10.1016/j.applthermaleng.2014.03.065.
  • Sadi, M., and A. Arabkoohsar. 2020. “Techno-economic Analysis of off-Grid Solar-Driven Cold Storage Systems for Preventing the Waste of Agricultural Products in hot and Humid Climates.” Journal of Cleaner Production 275: 124143. doi:10.1016/j.jclepro.2020.124143.
  • Said, S. A. M., K. Spindler, M. A. El-Shaarawi, M. U. Siddiqui, F. Schmid, B. Bierling, and M. M. A. Khan. 2016. “Design, Construction and Operation of a Solar-Powered Ammonia-Water Absorption Refrigeration System in Saudi Arabia.” International Journal of Refrigeration 62: 222–231. doi:10.1016/j.ijrefrig.2015.10.026.
  • Sethu, M. R., A. Kumar, and N. R. Yardi. 1986. “Design, Installation and Performance of a 10 TR Solar-Powered Cold Storage in India.” Intersol Eighty Five 2: 1013–1017. doi:10.1016/B978-0-08-033177-5.50197-6.
  • Sukhatme, S. P. 2010. Solar Energy: Principles of Thermal Collection and Storage. New Delhi, India: TataMcGraw-Hill Publishing Company Limited.
  • Thepa, S., A. Pongtornkulpanicha, M. Amornkitbamrung, and C. Butcher. 2008. “Experience with Fully Operational Solar-Driven 10-ton LiBr/H2O Single-Effect Absorption Cooling System in Thailand.” Renewable Energy 33: 943–949. doi:10.1016/j.renene.2007.09.022.
  • Tripathi, R., G. N. Tiwari, and V. K. Dwivedi. 2016. “Overall Energy, Exergy, and Carbon Credit Analysis of N Partially Covered Photovoltaic Thermal (PV/T) Concentrating Collector Connected in Series.” Solar Energy 136: 260–267. doi:10.1016/j.solener.2016.07.002.
  • Vasilescu, C., and C. I. Ferreira. 2014. “Solar Driven Double-Effect Absorption Cycles for Sub-Zero Temperatures.” International Journal of Refrigeration 39: 86–94. doi:10.1016/j.ijrefrig.2013.09.034.
  • Wang, L., X. Bu, H. Wang, Z. Ma, W. Ma, and H. Lia. 2018. “Thermoeconomic Evaluation and Optimization of Lithium Bromide-Water Double Absorption Heat Transformer Driven by Flat Plate Collector.” Energy Conversion and Management 162: 66–76. doi:10.1016/j.enconman.2018.02.011.
  • Zheng, W., J. Yang, H. Zhang, and S. You. 2016. “Simulation and Optimization of Steam Operated Double Effect Water-LiBr Absorption Heat Pump.” Applied Thermal Engineering 109: 454–465. doi:10.1016/j.applthermaleng.2016.08.113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.