499
Views
3
CrossRef citations to date
0
Altmetric
Review

Influence of different types of vortex generators (VGs) to enhance heat transfer performance in heat exchangers: a review

, &
Pages 5718-5741 | Received 13 Jun 2021, Accepted 07 Sep 2021, Published online: 03 Oct 2021

References

  • Alamgholilou, A., and E. Esmaeilzadeh. 2012. “Experimental Investigation on Hydrodynamics and Heat Transfer of Fluid Flow Into Channel for Cooling of Rectangular Ribs by Passive and EHD Active Enhancement Methods.” Experimental Thermal and Fluid Science 38. Elsevier Inc.: 61–73. doi:10.1016/j.expthermflusci.2011.11.008.
  • Ali, Ehtesham, Jaehyun Park, and Heesung Park. 2021. “Numerical Investigation of Enhanced Heat Transfer in a Rectangular Channel with Winglets.” Heat Transfer Engineering 42 (8). Taylor & Francis: 695–705. doi:10.1080/01457632.2020.1723845.
  • Ameur, Houari, Djamel Sahel, and Younes Menni. 2021. “Numerical Investigation of the Performance of Perforated Baffles in a Plate-fin Heat Exchanger.” Thermal Science 25: 3629–3641.
  • Andrzejczyk, Rafał, Tomasz Muszynski, and Przemysław Kozak. 2021. “Experimental and Computational Fluid Dynamics Studies on Straight and U-Bend Double Tube Heat Exchangers with Active and Passive Enhancement Methods.” Heat Transfer Engineering 42 (3–4). Taylor & Francis: 167–180. doi:10.1080/01457632.2019.1699279.
  • Awais, Muhammad, and Arafat A. Bhuiyan. 2019. “Enhancement of Thermal and Hydraulic Performance of Compact Finned-Tube Heat Exchanger Using Vortex Generators (VGs): A Parametric Study.” International Journal of Thermal Sciences 140 (February). Elsevier: 154–166. doi:10.1016/j.ijthermalsci.2019.02.041.
  • Behfard, M., and A. Sohankar. 2016. “Numerical Investigation for Finding the Appropriate Design Parameters of a Fin-and-Tube Heat Exchanger with Delta-Winglet Vortex Generators.” Heat and Mass Transfer/Waerme-Und Stoffuebertragung 52 (1). Springer Berlin Heidelberg: 21–37. doi:10.1007/s00231-015-1705-1.
  • Bellahcene, Lahcene, Djamel Sahel, and Aissa Yousfi. 2021. “Numerical Study of Shell and Tube Heat Exchanger Performance Enhancement Using Nanofluids and Baffling Technique.” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 80 (2): 42–55. doi:10.37934/ARFMTS.80.2.4255.
  • Bhuiyan, Arafat A., and A. K.M. Sadrul Islam. 2016. “Thermal and Hydraulic Performance of Finned-Tube Heat Exchangers Under Different Flow Ranges: A Review on Modeling and Experiment.” International Journal of Heat and Mass Transfer 101. Elsevier Ltd: 38–59. doi:10.1016/j.ijheatmasstransfer.2016.05.022.
  • Boonloi, Amnart, and Withada Jedsadaratanachai. 2016. “Flow Topology, Heat Transfer Characteristic and Thermal Performance in a Circular Tube Heat Exchanger Inserted with Punched Delta Winglet Vortex Generators.” Journal of Mechanical Science and Technology 30 (1): 457–471. doi:10.1007/s12206-015-1251-2.
  • Caliskan, S. 2014. “Experimental Investigation of Heat Transfer in a Channel with New Winglet-Type Vortex Generators.” International Journal of Heat and Mass Transfer 78. Elsevier Ltd: 604–614. doi:10.1016/j.ijheatmasstransfer.2014.07.043.
  • Chamoli, Sunil, Ruixin Lu, Dehao Xu, and Peng Yu. 2018. “Thermal Performance Improvement of a Solar Air Heater Fitted with Winglet Vortex Generators.” Solar Energy 159 (July 2017). Elsevier: 966–983. doi:10.1016/j.solener.2017.11.046.
  • Chokphoemphun, Suriya, Monsak Pimsarn, Chinaruk Thianpong, and Pongjet Promvonge. 2015. “Heat Transfer Augmentation in a Circular Tube with Winglet Vortex Generators.” Chinese Journal of Chemical Engineering 23 (4): 605–614. doi:10.1016/j.cjche.2014.04.002.
  • Dodiya, Kuldip, Nilesh Bhatt, and Feng Lai. 2020. “Louvered Fin Compact Heat Exchanger: A Comprehensive Review.” International Journal of Ambient Energy 0 (0). Taylor & Francis: 1–15. doi:10.1080/01430750.2020.1839549.
  • Esmaeilzadeh, A., N. Amanifard, and H. M. Deylami. 2017. “Comparison of Simple and Curved Trapezoidal Longitudinal Vortex Generators for Optimum Flow Characteristics and Heat Transfer Augmentation in a Heat Exchanger.” Applied Thermal Engineering 125: 1414–1425. doi:10.1016/j.applthermaleng.2017.07.115.
  • Fiebig, M. 1998. “Vortices, Generators and Heat Transfer.” Chemical Engineering Research and Design 76 (2): 108–123. doi:10.1205/026387698524686.
  • Gholami, A. A., Mazlan A. Wahid, and H. A. Mohammed. 2014. “Heat Transfer Enhancement and Pressure Drop for Fin-and-Tube Compact Heat Exchangers with Wavy Rectangular Winglet-Type Vortex Generators.” International Communications in Heat and Mass Transfer 54. Elsevier Ltd: 132–140. doi:10.1016/j.icheatmasstransfer.2014.02.016.
  • Gupta, Sachin, Aditya Roy, and Arvind Gupta. 2020. “Computer-Aided Engineering Analysis for the Performance Augmentation of a Fin-Tube Heat Exchanger Using Vortex Generator.” Concurrent Engineering Research and Applications 28 (1): 47–57. doi:10.1177/1063293X19891770.
  • Gupta, Sachin, Aditya Roy, Arvind Gupta, and Munish Gupta. 2019. “Numerical Simulations of Performance of Plate Fin Tube Heat Exchanger Using Rectangular Winglet Type Vortex Generator with Punched Holes.” SAE Technical Papers 2019-April (April)..
  • Gupta, Arvind, Aditya Roy, Sachin Gupta, and Munish Gupta. 2020. “Numerical Investigation Towards Implementation of Punched Winglet as Vortex Generator for Performance Improvement of a Fin-and-Tube Heat Exchanger.” International Journal of Heat and Mass Transfer 149. Elsevier Ltd: 119171..
  • Gururatana, Suabsakul, and Sompol Skullong. 2019. “Experimental Investigation of Heat Transfer in a Tube Heat Exchanger with Airfoil-Shaped Insert.” Case Studies in Thermal Engineering 14 (December 2018). Elsevier Ltd: 100462. doi:10.1016/j.csite.2019.100462.
  • Han, Zhimin, Zhiming Xu, and Jingtao Wang. 2018. “Numerical Simulation on Heat Transfer Characteristics of Rectangular Vortex Generators with a Hole.” International Journal of Heat and Mass Transfer 126: 993–1001. doi:10.1016/j.ijheatmasstransfer.2018.06.081.
  • Hapanowicz, Jerzy, and Patrycja Polaczek. 2013. “Convective Heat Transfer of a Liquid Dispersion System Flowing in a Pipe.” Experimental Thermal and Fluid Science 45. Elsevier Inc.: 1–7. doi:10.1016/j.expthermflusci.2012.11.007.
  • Haque, Mohammad Rejaul, and Ashiqur Rahman. 2020. “Numerical Investigation of Convective Heat Transfer Characteristics of Circular and Oval Tube Banks with Vortex Generators.” Journal of Mechanical Science and Technology 34 (1): 457–467. doi:10.1007/s12206-019-1044-0.
  • He, Ya Ling, Pan Chu, Wen Quan Tao, Yu Wen Zhang, and Tao Xie. 2013. “Analysis of Heat Transfer and Pressure Drop for Fin-and-Tube Heat Exchangers with Rectangular Winglet-Type Vortex Generators.” Applied Thermal Engineering 61 (2). Elsevier Ltd: 770–783. doi:10.1016/j.applthermaleng.2012.02.040.
  • He, Y. L., H. Han, W. Q. Tao, and Y. W. Zhang. 2012. “Numerical Study of Heat-Transfer Enhancement by Punched Winglet-Type Vortex Generator Arrays in Fin-and-Tube Heat Exchangers.” International Journal of Heat and Mass Transfer 55 (21–22): 5449–5458. doi:10.1016/j.ijheatmasstransfer.2012.04.059.
  • He, Ya Ling, and Yuwen Zhang. 2012. “Advances and Outlooks of Heat Transfer Enhancement by Longitudinal Vortex Generators.” Advances in Heat Transfer 44: 119–185. doi:10.1016/B978-0-12-396529-5.00002-0.
  • Hesselgreaves, J.E., Richard Law, David A. Reay. 2017. Compact Heat.
  • Jacobi, A. M., and R. K. Shah. 1995. “Heat Transfer Surface Enhancement Through the Use of Longitudinal Vortices: A Review of Recent Progress.” Experimental Thermal and Fluid Science 11 (3): 295–309. doi:10.1016/0894-1777(95)00066-U.
  • Jedsadaratanachai, Withada, and Amnart Boonloi. 2015. “Influences of the Wavy Surface Inserted in the Middle of a Circular Tube Heat Exchanger on Thermal Performance.” Journal of Mechanical Science and Technology 29 (9): 4031–4046. doi:10.1007/s12206-015-0849-8.
  • Kaci, Hakim Mohand, Charbel Habchi, Thierry Lemenand, Dominique Della Valle, and Hassan Peerhossaini. 2010. “Flow Structure and Heat Transfer Induced by Embedded Vorticity.” International Journal of Heat and Mass Transfer 53 (17–18). Elsevier Ltd: 3575–3584. doi:10.1016/j.ijheatmasstransfer.2010.04.029.
  • Kareem, Zaid S., M. N. Mohd Jaafar, Tholudin M. Lazim, Shahrir Abdullah, and Ammar F. Abdulwahid. 2015. “Passive Heat Transfer Enhancement Review in Corrugation.” Experimental Thermal and Fluid Science 68. Elsevier Inc.: 22–38. doi:10.1016/j.expthermflusci.2015.04.012.
  • Karima, Alem, Sahel Djamel, Nemdili Ali, and Ameur Houari. 2018. “CFD Investigations of Thermal and Dynamic Behaviors in a Tubular Heat Exchanger with Butterfly Baffles.” Frontiers in Heat and Mass Transfer 10–27.
  • Kashyap, Uddip, Koushik Das, and Biplab Kumar Debnath. 2018. “Effect of Surface Modification of a Rectangular Vortex Generator on Heat Transfer Rate from a Surface to Fluid.” International Journal of Thermal Sciences 127 (August 2017): 61–78. doi:10.1016/j.ijthermalsci.2018.01.004.
  • Kaur, Inderjot. 2019. “Thermal-Hydraulic Performance Enhancement by Combination Concepts of Longitudinal Vortex Generators, V-Shaped Concavities and Protrusions.” Master of Science, North Carolina State University
  • Ke, Hanbing, Tariq Amin Khan, Wei Li, Yusheng Lin, Zhiwu Ke, Hua Zhu, and Zhengjiang Zhang. 2019. “Thermal-Hydraulic Performance and Optimization of Attack Angle of Delta Winglets in Plain and Wavy Finned-Tube Heat Exchangers.” Applied Thermal Engineering 150 (December 2018). Elsevier: 1054–1065..
  • Khanjian, Assadour, Charbel Habchi, Serge Russeil, Daniel Bougeard, and Thierry Lemenand. 2017. “Effect of Rectangular Winglet Pair Roll Angle on the Heat Transfer Enhancement in Laminar Channel Flow.” International Journal of Thermal Sciences 114. Elsevier Masson SAS: 1–14. doi:10.1016/j.ijthermalsci.2016.12.010.
  • Khoshvaght-Aliabadi, M., O. Sartipzadeh, and A. Alizadeh. 2015. “An Experimental Study on Vortex-Generator Insert with Different Arrangements of Delta-Winglets.” Energy 82. Elsevier Ltd: 629–639. doi:10.1016/j.energy.2015.01.072.
  • Krishnakumar, K., Anish K. John, and G. Venkatarathnam. 2011. “A Review on Transient Test Techniques for Obtaining Heat Transfer Design Data of Compact Heat Exchanger Surfaces.” Experimental Thermal and Fluid Science 35 (4). Elsevier Inc.: 738–743. doi:10.1016/j.expthermflusci.2010.12.006.
  • Lei, Yong Gang, Ya Ling He, Li Ting Tian, Pan Chu, and Wen Quan Tao. 2010. “Hydrodynamics and Heat Transfer Characteristics of a Novel Heat Exchanger with Delta-Winglet Vortex Generators.” Chemical Engineering Science 65 (5). Elsevier: 1551–1562. doi:10.1016/j.ces.2009.10.017.
  • Lei, Yonggang, Fang Zheng, Chongfang Song, and Yongkang Lyu. 2017. “Improving the Thermal Hydraulic Performance of a Circular Tube by Using Punched Delta-Winglet Vortex Generators.” International Journal of Heat and Mass Transfer 111: 299–311. doi:10.1016/j.ijheatmasstransfer.2017.03.101.
  • Li, Ya Xia, Xia Wang, Jing Zhang, Li Zhang, and Jian Hua Wu. 2019. “Comparison and Analysis of the Arrangement of Delta Winglet Pair Vortex Generators in a Half Coiled Jacket for Heat Transfer Enhancement.” International Journal of Heat and Mass Transfer 129. Elsevier Ltd: 287–298. doi:10.1016/j.ijheatmasstransfer.2018.09.109.
  • Liang, G., M. D. Islam, N. Kharoua, and R. Simmons. 2018. “Numerical Study of Heat Transfer and Flow Behavior in a Circular Tube Fitted with Varying Arrays of Winglet Vortex Generators.” International Journal of Thermal Sciences 134 (June). Elsevier: 54–65. doi:10.1016/j.ijthermalsci.2018.08.004.
  • Liebenberg, Leon, and Josua P. Meyer. 2007. “In-Tube Passive Heat Transfer Enhancement in the Process Industry.” Applied Thermal Engineering 27 (16 SPEC. ISS.): 2713–2726. doi:10.1016/j.applthermaleng.2007.06.003.
  • Liu, Peng, Zhimin Dong, Jinyi Lv, Feng Shan, Zhichun Liu, and Wei Liu. 2020. “Numerical Study on Thermal-Hydraulic Performance and Exergy Analysis of Laminar Oil Flow in a Circular Tube with Fluid Exchanger Inserts.” International Journal of Thermal Sciences 153 (January). Elsevier Masson SAS: 106365.
  • Liu, Huan ling, Chen chen Fan, Ya ling He, and David S. Nobes. 2019. “Heat Transfer and Flow Characteristics in a Rectangular Channel with Combined Delta Winglet Inserts.” International Journal of Heat and Mass Transfer 134. Elsevier Ltd: 149–165. doi:10.1016/j.ijheatmasstransfer.2019.01.004.
  • Liu, Song, Hua Jin, Ke Wei Song, Liang Chen Wang, Xiang Wu, and Liang Bi Wang. 2017. “Heat Transfer and Pressure Drop Characteristics of the Tube Bank Fin Heat Exchanger with Fin Punched with Flow Redistributors and Curved Triangular Vortex Generators.” Heat and Mass Transfer/Waerme- Und Stoffuebertragung 53 (10). Springer Berlin Heidelberg: 3013–3026. doi:10.1007/s00231-017-2044-1.
  • Liu, Huan ling, Heng Li, Ya ling He, and Zeng tao Chen. 2018. “Heat Transfer and Flow Characteristics in a Circular Tube Fitted with Rectangular Winglet Vortex Generators.” International Journal of Heat and Mass Transfer 126 (1800). Elsevier Ltd: 989–1006..
  • Lotfi, Babak, and Bengt Sundén. 2020. “Thermo-Hydraulic Performance Enhancement of Finned Elliptical Tube Heat Exchangers by Utilizing Innovative Dimple Turbulators.” Heat Transfer Engineering 41 (13). Taylor & Francis: 1117–1142. doi:10.1080/01457632.2019.1611132.
  • Lu, Gaofeng, and Guobing Zhou. 2016. “Numerical Simulation on Performances of Plane and Curved Winglet Type Vortex Generator Pairs with Punched Holes.” International Journal of Heat and Mass Transfer 102. Elsevier Ltd: 679–690. doi:10.1016/j.ijheatmasstransfer.2016.06.063.
  • Luo, Chao, Kewei Song, Toshio Tagawa, Xiang Wu, and Liangbi Wang. 2020. “Thermal Performance of a Zig-Zag Channel Formed by Two Wavy Fins Mounted with Vortex Generators.” International Journal of Thermal Sciences 153 (February). Elsevier Masson SAS: 106361..
  • Maithani, Rajesh, and Anil Kumar. 2020. “Correlations Development for Nusselt Number and Friction Factor in a Dimpled Surface Heat Exchanger Tube.” Experimental Heat Transfer 33 (2). Taylor & Francis: 101–122. doi:10.1080/08916152.2019.1573863.
  • Manglik, Raj M., and Arthur E. Bergles. 2003. “Swirl Flow Heat Transfer and Pressure Drop with Twisted-Tape Inserts.” Advances in Heat Transfer 36.
  • Mo, Songping, Xueqing Chen, Ying Chen, and Zhen Yang. 2014. “Passive Control of Gas-Liquid Flow in a Separator Unit Using an Apertured Baffle in a Parallel-Flow Condenser.” Experimental Thermal and Fluid Science 53. Elsevier Inc.: 127–135. doi:10.1016/j.expthermflusci.2013.11.017.
  • Modi, Ashish J., Navnath A. Kalel, and Manish K. Rathod. 2020. “Thermal Performance Augmentation of Fin-and-Tube Heat Exchanger Using Rectangular Winglet Vortex Generators Having Circular Punched Holes.” International Journal of Heat and Mass Transfer 158. Elsevier Ltd: 119724. doi:10.1016/j.ijheatmasstransfer.2020.119724.
  • Mohammadi, K., and M. R. Malayeri. 2013. “Parametric Study of Gross Flow Maldistribution in a Single-Pass Shell and Tube Heat Exchanger in Turbulent Regime.” International Journal of Heat and Fluid Flow 44. Elsevier Inc.: 14–27. doi:10.1016/j.ijheatfluidflow.2013.02.010.
  • Naik, Hemant, and Shaligram Tiwari. 2018a. “Effect of Rectangular Winglet Pair in Common Flow Down Configuration on Heat Transfer from an Isothermally Heated Plate.” Heat Transfer Engineering 39 (20): 1774–1789..
  • Naik, Hemant, and Shaligram Tiwari. 2018b. “Effect of Winglet Location on Performance of Fin-Tube Heat Exchangers with Inline Tube Arrangement.” International Journal of Heat and Mass Transfer 125. Elsevier Ltd: 248–261. doi:10.1016/j.ijheatmasstransfer.2018.04.071.
  • Naik, Hemant, and Shaligram Tiwari. 2021. “Numerical Investigations on Fluid Flow and Heat Transfer Characteristics of Different Locations of Winglets Mounted in Fin-Tube Heat Exchangers.” Thermal Science and Engineering Progress 22. Elsevier Ltd: 100795. doi:10.1016/j.tsep.2020.100795.
  • Erfanian Nakhchi, M., and M. T. Rahmati. 2020. Turbulent Flows Inside Pipes Equipped With Novel Perforated V-Shaped Rectangular Winglet Turbulators: Numerical Simulations, Journal of Energy Resources Technology 142 (11): 1–10..
  • Nakhchi, M. E., J. A. Esfahani, and K. C. Kim. 2020. “Numerical Study of Turbulent Flow Inside Heat Exchangers Using Perforated Louvered Strip Inserts.” International Journal of Heat and Mass Transfer 148. doi:10.1016/j.ijheatmasstransfer.2019.119143.
  • Nandana, Varchasvi, and Uwe Janoske. 2018. “Numerical Study on the Enhancement of Heat Transfer Performance in a Rectangular Duct with New Winglet Shapes.” Thermal Science and Engineering Progress 6: 95–103. doi:10.1016/j.tsep.2018.03.005.
  • Omidi, Mohamad, Mousa Farhadi, and Mohamad Jafari. 2017. “A Comprehensive Review on Double Pipe Heat Exchangers.” Applied Thermal Engineering 110. Elsevier Ltd: 1075–1090. doi:10.1016/j.applthermaleng.2016.09.027.
  • Oneissi, Mohammad, Charbel Habchi, Serge Russeil, Daniel Bougeard, and Thierry Lemenand. 2016. “Novel Design of Delta Winglet Pair Vortex Generator for Heat Transfer Enhancement.” International Journal of Thermal Sciences 109: 1–9. doi:10.1016/j.ijthermalsci.2016.05.025.
  • Oneissi, Mohammad, Charbel Habchi, Serge Russeil, Thierry Lemenand, and Daniel Bougeard. 2018. “Heat Transfer Enhancement of Inclined Projected Winglet Pair Vortex Generators with Protrusions.” International Journal of Thermal Sciences 134 (January): 541–551. doi:10.1016/j.ijthermalsci.2018.08.032.
  • Pourhedayat, Samira, Seyed Mehdi Pesteei, Hamed Ebrahimi Ghalinghie, Mehran Hashemian, and Muhammad Aqeel Ashraf. 2020. “Thermal-Exergetic Behavior of Triangular Vortex Generators Through the Cylindrical Tubes.” International Journal of Heat and Mass Transfer 151. Elsevier Ltd: 119406. doi:10.1016/j.ijheatmasstransfer.2020.119406.
  • Promvonge, Pongjet, Pitak Promthaisong, and Sompol Skullong. 2020. “Experimental and Numerical Heat Transfer Study of Turbulent Tube Flow Through Discrete V-Winglets.” International Journal of Heat and Mass Transfer 151. Elsevier Ltd..
  • Promvonge, Pongjet, and Sompol Skullong. 2020a. “Enhanced Heat Transfer in Rectangular Duct with Punched Winglets.” Chinese Journal of Chemical Engineering 28 (3): 660–671. doi:10.1016/j.cjche.2019.09.012.
  • Promvonge, Pongjet, and Sompol Skullong. 2020b. “Thermo-Hydraulic Performance in Heat Exchanger Tube with V-Shaped Winglet Vortex Generator.” Applied Thermal Engineering 164 (August 2019). Elsevier: 114424. doi:10.1016/j.applthermaleng.2019.114424.
  • Rao, R. Venkata, Ankit Saroj, Pawel Ocloń, and Jan Taler. 2020. “Design Optimization of Heat Exchangers with Advanced Optimization Techniques: A Review.” Archives of Computational Methods in Engineering 27. Springer Netherlands..
  • Sahel, Djamel. 2021. “Thermal Performance Assessment of a Tubular Heat Exchanger Fitted with Flower Baffles.” Journal of Thermophysics and Heat Transfer, 1–9. doi:10.2514/1.t6208.
  • Sahel, Djamel, Houari Ameur, and Karima Alem. 2021. “Enhancement of the Hydrothermal Characteristics of Fin-and-Tube Heat Exchangers by Vortex Generators.” Journal of Thermophysics and Heat Transfer 35 (1): 152–163. doi:10.2514/1.T6023.
  • Sahel, Djamel, Houari Ameur, Redouane Benzeguir, and Youcef Kamla. 2016. “Enhancement of Heat Transfer in a Rectangular Channel with Perforated Baffles.” Applied Thermal Engineering 101: 156–164. doi:10.1016/j.applthermaleng.2016.02.136.
  • Sahel, Djamel, Houari Ameur, and Youcef Kamla. 2017. “A Numerical Study of Fluid Flow and Heat Transfer Over a Fin and Flat Tube Heat Exchangers with Complex Vortex Generators.” The European Physical Journal Applied Physics 78 (3): 1–9..
  • Sahel, Djamel, Houari Ameur, and Baki Touhami. 2020. “Effect of the Size of Graded Baffles on the Performance of Channel Heat Exchangers.” Thermal Science 24 (2): 767–775..
  • Sahel, Djamel, Lahcene Bellahcene, Aissa Yousfi, and Abdussamet Subasi. 2021. “Numerical Investigation and Optimization of a Heat Sink Having Hemispherical Pin Fins.” International Communications in Heat and Mass Transfer 122 (February): 105133. doi:10.1016/j.icheatmasstransfer.2021.105133.
  • Sahel, D., R. Benzeguir, and T. Baki. 201b. “Heat Transfer Enhancement in a Fin and Tube Heat Exchanger with Isosceles Vortex Generators.” Mechanika 21 (6): 457–464..
  • Sarangi, Shailesh Kumar, and Dipti Prasad Mishra. 2017. “Effect of Winglet Location on Heat Transfer of a Fin-and-Tube Heat Exchanger.” Applied Thermal Engineering 116. Elsevier Ltd: 528–540. doi:10.1016/j.applthermaleng.2017.01.106.
  • Sheikholeslami, Mohsen, Mofid Gorji-Bandpy, and Davood Domiri Ganji. 2015. “Review of Heat Transfer Enhancement Methods: Focus on Passive Methods Using Swirl Flow Devices.” Renewable and Sustainable Energy Reviews 49: 444–469. doi:10.1016/j.rser.2015.04.113.
  • Singh, Satyendra, Ashutosh Pandey, and Himanshi Kharkwal. 2020. “Effects of Serrated Circular Ring with Rectangular Winglets on Thermal Properties of Tube Heat Exchanger: An Experimental and Numerical Study.” Experimental Heat Transfer 33 (6). Taylor & Francis: 572–585. doi:10.1080/08916152.2019.1702599.
  • Skullong, Sompol, Pongjet Promvonge, Chinaruk Thianpong, and Nuthvipa Jayranaiwachira. 2017. “Thermal Behaviors in a Round Tube Equipped with Quadruple Perforated-Delta-Winglet Pairs.” Applied Thermal Engineering 115: 229–243. doi:10.1016/j.applthermaleng.2016.12.082.
  • Sun, Zhiqiang, Kang Zhang, Wenhao Li, Qiang Chen, and Nianben Zheng. 2020. “Investigations of the Turbulent Thermal-Hydraulic Performance in Circular Heat Exchanger Tubes with Multiple Rectangular Winglet Vortex Generators.” Applied Thermal Engineering 168 (November 2019). Elsevier: 114838..
  • Suri, Amar Raj Singh, Anil Kumar, and Rajesh Maithani. 2018a. “Convective Heat Transfer Enhancement Techniques of Heat Exchanger Tubes: A Review.” International Journal of Ambient Energy 39 (7). Taylor & Francis: 649–670. doi:10.1080/01430750.2017.1324816.
  • Suri, Amar Raj Singh, Anil Kumar, and Rajesh Maithani. 2018b. “Experimental Investigation of Heat Transfer and Fluid Flow Behaviour in Multiple Square Perforated Twisted Tape with Square Wing Inserts Heat Exchanger Tube.” Heat and Mass Transfer 54, no. 6: 1813-1826. doi:10.1007/s00231-018-2290-x
  • Tang, Linghong, Jie Pan, and Bengt Sundén. 2019. “Parametric Study and Optimization on Heat Transfer and Flow Characteristics in a Rectangular Channel with Longitudinal Vortex Generators.” Numerical Heat Transfer; Part A: Applications 76 (11). Taylor & Francis: 830–850. doi:10.1080/10407782.2019.1673095.
  • Thulukkanam, Kuppan. 2000. Heat Exchanger Design Handbook..
  • Tian, Man Wen, Saleh Khorasani, Hazim Moria, Samira Pourhedayat, and Hamed Sadighi Dizaji. 2020. “Profit and Efficiency Boost of Triangular Vortex-Generators by Novel Techniques.” International Journal of Heat and Mass Transfer 156. Elsevier Ltd: 119842. doi:10.1016/j.ijheatmasstransfer.2020.119842.
  • Tiggelbeck, S., N. K. Mitra, and M. Fiebig. 1994. “Comparison of Wing-Type Vortex Generators for Heat Transfer Enhancement in Channel Flows.” Journal of Heat Transfer 116 (4): 880–885. doi:10.1115/1.2911462.
  • Triwijayanta, Agung, Muhammad Aziz, Keishi Kariya, and Akio Miyara. 2018. “Article Numerical Study of Heat Transfer Enhancement of Internal Flow Using Double-Sided Delta-Winglet Tape Insert.” Energies 11 (11)..
  • Vitillo, F., L. Cachon, F. Reulet, and P. Millan. 2016. “Flow Analysis of an Innovative Compact Heat Exchanger Channel Geometry.” International Journal of Heat and Fluid Flow 58. Elsevier Inc.: 30–39. doi:10.1016/j.ijheatfluidflow.2015.11.006.
  • Wang, Wenjin, Yang Bao, and Youqing Wang. 2015. “Numerical Investigation of a Finned-Tube Heat Exchanger with Novel Longitudinal Vortex Generators.” Applied Thermal Engineering 86. Elsevier Ltd: 27–34. doi:10.1016/j.applthermaleng.2015.04.041.
  • Wang, Chi Chuan, Jerry Lo, Yur Tsai Lin, and Min Sheng Liu. 2002. “Flow Visualization of Wave-Type Vortex Generators Having Inline Fin-Tube Arrangement.” International Journal of Heat and Mass Transfer 45 (9): 1933–1944. doi:10.1016/S0017-9310(01)00289-7.
  • Wijayanta, Agung Tri, Budi Kristiawan, Pranowo, Agung Premono, and Muhammad Aziz. 2019. “Computational Fluid Dynamics Analysis of an Enhanced Tube with Backward Louvered Strip Insert.” Energies 12 (17)..
  • Wijayanta, Agung Tri, Tri Istanto, Keishi Kariya, and Akio Miyara. 2017. “Heat Transfer Enhancement of Internal Flow by Inserting Punched Delta Winglet Vortex Generators with Various Attack Angles.” Experimental Thermal and Fluid Science 87. Elsevier Inc.: 141–148. doi:10.1016/j.expthermflusci.2017.05.002.
  • Wijayanta, Agung Tri, Mirmanto, and Muhammad Aziz. 2020. “Heat Transfer Augmentation of Internal Flow Using Twisted Tape Insert in Turbulent Flow.” Heat Transfer Engineering 41 (14): 1288–1300. doi:10.1080/01457632.2019.1637149.
  • Wijayanta, Agung Tri, Pranowo, Mirmanto, Budi Kristiawan, and Muhammad Aziz. 2019. “Internal Flow in an Enhanced Tube Having Square-Cut Twisted Tape Insert.” Energies 12 (2)..
  • Wijayanta, Agung Tri, Indri Yaningsih, Muhammad Aziz, Takahiko Miyazaki, and Shigeru Koyama. 2018. “Double-Sided Delta-Wing Tape Inserts to Enhance Convective Heat Transfer and Fluid Flow Characteristics of a Double-Pipe Heat Exchanger.” Applied Thermal Engineering 145 (March): 27–37. doi:10.1016/j.applthermaleng.2018.09.009.
  • Wijayanta, Agung Tri, Indri Yaningsih, Wibawa Endra Juwana, Muhammad Aziz, and Takahiko Miyazaki. 2020. “Effect of Wing-Pitch Ratio of Double-Sided Delta-Wing Tape Insert on the Improvement of Convective Heat Transfer.” International Journal of Thermal Sciences 151 (December 2019): 106261. doi:10.1016/j.ijthermalsci.2020.106261.
  • Wu, Xiang, Zhi Min Lin, Song Liu, Mei Su, Liang Chen Wang, and Liang Bi Wang. 2017. “Experimental Study on the Effects of Fin Pitches and Tube Diameters on the Heat Transfer and Fluid Flow Characteristics of a Fin Punched with Curved Delta-Winglet Vortex Generators.” Applied Thermal Engineering 119: 560–572. doi:10.1016/j.applthermaleng.2017.03.072.
  • Wu, J. M., and W. Q. Tao. 2012. “Effect of Longitudinal Vortex Generator on Heat Transfer in Rectangular Channels.” Applied Thermal Engineering 37: 67–72. doi:10.1016/j.applthermaleng.2012.01.002.
  • Wu, Hao, David S.K. Ting, and Steve Ray. 2018. “The Effect of Delta Winglet Attack Angle on the Heat Transfer Performance of a Flat Surface.” International Journal of Heat and Mass Transfer 120. Elsevier Ltd: 117–126. doi:10.1016/j.ijheatmasstransfer.2017.12.030.
  • Xu, Zhiming, Zhimin Han, Jingtao Wang, and Zuodong Liu. 2018. “The Characteristics of Heat Transfer and Flow Resistance in a Rectangular Channel with Vortex Generators.” International Journal of Heat and Mass Transfer 116: 61–72. doi:10.1016/j.ijheatmasstransfer.2017.08.083.
  • Xu, Y., M. D. Islam, and N. Kharoua. 2017. “Numerical Study of Winglets Vortex Generator Effects on Thermal Performance in a Circular Pipe.” International Journal of Thermal Sciences 112: 304–317. doi:10.1016/j.ijthermalsci.2016.10.015.
  • Xu, Y., M. D. Islam, and N. Kharoua. 2018. “Experimental Study of Thermal Performance and Flow Behaviour with Winglet Vortex Generators in a Circular Tube.” Applied Thermal Engineering 135 (April 2017): 257–268. doi:10.1016/j.applthermaleng.2018.01.112.
  • Yadav, Saurabh, and Santosh K. Sahu. 2019. “Effect of Helical Surface Disc Turbulators on Heat Transfer and Friction Factor Characteristics in the Annuli of a Double-Pipe Heat Exchanger.” Chemical Engineering and Technology 42 (6): 1205–1213. doi:10.1002/ceat.201800251.
  • Yaningsih, Indri, Agung Tri Wijayanta, Takahiko Miyazaki, and Shigeru Koyama. 2018a. “Impact of Blockage Ratio on Thermal Performance of Delta-Winglet Vortex Generators.” Applied Sciences (Switzerland) 8 (2)..
  • Yaningsih, Indri, Agung Tri Wijayanta, Takahiko Miyazaki, and Shigeru Koyama. 2018b. “Thermal Hydraulic Characteristics of Turbulent Single-Phase Flow in an Enhanced Tube Using Louvered Strip Insert with Various Slant Angles.” International Journal of Thermal Sciences 134 (August): 355–362. doi:10.1016/j.ijthermalsci.2018.08.025.
  • Yaningsih, Indri, Agung Tri Wijayanta, Takahiko Miyazaki, and Shigeru Koyama. 2018c. “V-Cut Twisted Tape Insert Effect on Heat Transfer Enhancement of Single Phase Turbulent Flow Heat Exchanger.” AIP Conference Proceedings 1931 (February)..
  • Yoo, Seong Yeon, Dong Seong Park, Min Ho Chung, and Sang Yun Lee. 2002. “Heat Transfer Enhancement for Fin-Tube Heat Exchanger Using Vortex Generators.” KSME International Journal 16 (1): 109–115. doi:10.1007/BF03185161.
  • Zeeshan, Mohd, Sujit Nath, and Dipankar Bhanja. 2019a. “Determination of Optimum Winglet Height of Longitudinal Vortex Generators for the Best Thermo-Hydraulic Performance of Compact Heat Exchangers.” Journal of Mechanical Science and Technology 33 (9): 4529–4534. doi:10.1007/s12206-019-0849-1.
  • Zeeshan, Mohd, Sujit Nath, and Dipankar Bhanja. 2019b. “Numerical Investigation to Predict Optimum Attack Angle Combination of Longitudinal Vortex Generators in Compact Heat Exchangers for Thermo-Hydraulic Heightened Performance.” Sadhana - Academy Proceedings in Engineering Sciences 44 (12). Springer India..
  • Zeeshan, Mohd, Sujit Nath, and Dipankar Bhanja. 2020. “Numerical Analysis to Predict the Optimum Configuration of Fin and Tube Heat Exchanger with Rectangular Vortex Generators for Enhanced Thermohydraulic Performance.” Heat and Mass Transfer/Waerme- Und Stoffuebertragung 56 (7). Heat and Mass Transfer: 2159–2169. doi:10.1007/s00231-020-02843-8.
  • Zhai, C., M. D. Islam, M. M. Alam, R. Simmons, and I. Barsoum. 2019. “Parametric Study of Major Factors Affecting Heat Transfer Enhancement in a Circular Tube with Vortex Generator Pairs.” Applied Thermal Engineering 153 (October 2018). Elsevier: 330–340. doi:10.1016/j.applthermaleng.2019.03.018.
  • Zhang, Kang, Zhiqiang Sun, Nianben Zheng, and Qiang Chen. 2020. “Effects of the Configuration of Winglet Vortex Generators on Turbulent Heat Transfer Enhancement in Circular Tubes.” International Journal of Heat and Mass Transfer 157. Elsevier Ltd..
  • Zhao, Zhiqi, Lei Luo, Dandan Qiu, Songtao Wang, Zhongqi Wang, and Bengt Sundén. 2021. “On the Topology of Vortex Structures and Heat Transfer of a Gas Turbine Blade Internal Tip with Different Arrangement of Delta-Winglet Vortex Generators.” International Journal of Thermal Sciences 160.
  • Zhou, Guobing, and Qiuling Ye. 2012. “Experimental Investigations of Thermal and Flow Characteristics of Curved Trapezoidal Winglet Type Vortex Generators.” Applied Thermal Engineering 37. Elsevier Ltd: 241–248. doi:10.1016/j.applthermaleng.2011.11.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.