118
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Effect of nonlinear radiation on entropy optimised MHD fluid flow

, & ORCID Icon
Pages 6909-6918 | Received 27 May 2021, Accepted 09 Mar 2022, Published online: 11 Apr 2022

References

  • Abbas, S. Z., M. I. Khan, S. Kadry, W. A. Khan, M. Israr-Ur-Rehman, and M. Waqas. 2020. “Fully Developed Entropy Optimized Second Order Velocity Slip MHD Nanofluid Flow with Activation Energy.” Computer Methods and Programs in Biomedicine 190: 105362. doi:10.1016/j.cmpb.2020.105362
  • Abbas, S. Z., W. A. Khan, S. Kadry, M. I. Khan, M. Waqas, and M. I. Khan. 2020. “Entropy Optimized Darcy-Forchheimer Nanofluid (Silicon Dioxide, Molybdenum Disulfide) Subject to Temperature Dependent Viscosity.” Computer Methods and Programs in Biomedicine 190: 105363. doi:10.1016/j.cmpb.2020.105363
  • Abdelsalam, S. I., J. X. Velasco-Hernández, and A. Z. Zaher. 2021. “Electro-Magnetically Modulated Self-Propulsion of Swimming Sperms Via Cervical Canal.” Biomechanics and Modeling in Mechanobiology 20: 861–878. doi:10.1007/s10237-020-01407-3
  • Abdelsalam, S. I., and A. Z. Zaher. 2021. “Leveraging Elasticity to Uncover the Role of Rabinowitsch Suspension Through a Wavelike Conduit: Consolidated Blood Suspension Application.” Mathematics 9 (16): 2008. doi:10.3390/math9162008
  • Abumandour, R. M., I. M. Eldesoky, M. H. Kamel, M. M. Ahmed, and S. I. Abdelsalam. 2020. “Peristaltic Thrusting of a Thermal-Viscosity Nanofluid Through a Resilient Vertical Pipe.” Zeitschrift Fur Naturforschung – Section A Journal of Physical Sciences 75 (8): 727–738. doi:10.1515/zna-2020-0054
  • Aslani, K. E., and I. E. Sarris. 2021. “Effect of Micromagnetorotation on Magnetohydrodynamic Poiseuille Micropolar Flow: Analytical Solutions and Stability Analysis.” Journal of Fluid Mechanics 920: 1–26. doi:10.1017/jfm.2021.437
  • Bhatti, M. M., and S. I. Abdelsalam. 2021. “Thermodynamic Entropy of a Magnetized Ree-Eyring Particle-Fluid Motion with Irreversibility Process: A Mathematical Paradigm.” Zeitschrift Fur Angewandte Mathematik Und Mechanik 101: 1–17. doi:10.1002/zamm.202000186
  • Bhatti, M. M., S. Z. Alamri, R. Ellahi, and S. I. Abdelsalam. 2021. “Intra-Uterine Particle–Fluid Motion Through a Compliant Asymmetric Tapered Channel with Heat Transfer.” Journal of Thermal Analysis and Calorimetry 144: 2259–2267. doi:10.1007/s10973-020-10233-9
  • Bhatti, M. M., M. Marin, A. Zeeshan, and S. I. Abdelsalam. 2020. “Editorial: Recent Trends in Computational Fluid Dynamics.” Frontiers in Physics 8: 1–4. doi:10.3389/fphy.2020.593111
  • Eldesoky, I. M., S. I. Abdelsalam, W. A. El-Askary, and M. M. Ahmed. 2020. “The Integrated Thermal Effect in Conjunction with Slip Conditions on Peristaltically Induced Particle-Fluid Transport in a Catheterized Pipe.” Journal of Porous Media 23: 695–713.
  • Elkoumy, S. R., E. I. Barakat, and S. I. Abdelsalam. 2013. “Hall and Transverse Magnetic Field Effects on Peristaltic Flow of a Maxwell Fluid Through a Porous Medium.” Global Journal of Pure and Applied Mathematics 9: 187–203.
  • Elmaboud, Y. A., and S. I. Abdelsalam. 2019. “DC/AC Magnetohydrodynamic-Micropump of a Generalized Burger’s Fluid in an Annulus.” Physica Scripta 94: 115209.
  • Farooq, M., M. I. Khan, M. Waqas, T. Hayat, A. Alsaedi, and M. I. Khan. 2016. “MHD Stagnation Point Flow of Viscoelastic Nanofluid with Non-Linear Radiation Effects.” Journal of Molecular Liquids 221: 1097–1103. doi:10.1016/j.molliq.2016.06.077
  • Gowda, R. J. P., R. N. Kumar, A. M. Jyothi, B. C. Prasannakumara, and I. E. Sarris. 2021. “Impact of Binary Chemical Reaction and Activation Energy on Heat and Mass Transfer of Marangoni Driven Boundary Layer Flow of a Non-Newtonian Nanofluid.” Processes 9: 702. doi:10.3390/pr9040702
  • Hayat, T., M. I. Khan, M. Farooq, A. Alsaedi, M. Waqas, and T. Yasmeen. 2016. “Impact of Cattaneo-Christov Heat Flux Model in Flow of Variable Thermal Conductivity Fluid Over a Variable Thicked Surface.” International Journal of Heat and Mass Transfer 99: 702–710. doi:10.1016/j.ijheatmasstransfer.2016.04.016
  • Hayat, T., M. I. Khan, M. Farooq, A. Alsaedi, and T. Yasmeen. 2017. “Impact of Marangoni Convection in the Flow of Carbon–Water Nanofluid with Thermal Radiation.” International Journal of Heat and Mass Transfer 106: 810–815. doi:10.1016/j.ijheatmasstransfer.2016.08.115
  • Ibrahim, M., and M. I. Khan. 2020. “Mathematical Modeling and Analysis of SWCNT-Water and MWCNT-Water Flow Over a Stretchable Sheet.” Computer Methods and Programs in Biomedicine 187: 105222. doi:10.1016/j.cmpb.2019.105222
  • Kataria, H. R., and M. H. Mistry. 2021a. “Entropy Optimized MHD Fluid Flow Over a Vertical Stretching Sheet in Presence of Radiation.” Heat Transfer 2021: 1–19. doi:10.1002/htj.22412
  • Kataria, H. R., and M. H. Mistry. 2021b. “Effect of Non-Linear Radiation on MHD Mixed Convection Flow of a Micropolar Fluid Over an Unsteady Stretching Sheet.” Journal of Physics: Conference Series 1964: 022005. doi:10.1088/1742-6596/1964/2/022005
  • Kataria, H. R., M. H. Mistry, and A. S. Mittal. 2021. “Influence of Nonlinear Radiation on MHD Micropolar Fluid Flow with Viscous Dissipation.” Heat Transfer 2021: 1–19. doi:10.1002/htj.22359
  • Kataria, H. R., and A. S. Mittal. 2015. “Mathematical Model for Velocity and Temperature of Gravity-Driven Convective Optically Thick Nanofluid Flow Past an Oscillating Vertical Plate in Presence of Magnetic Field and Radiation.” Journal of the Nigerian Mathematical Society 34: 303–317. doi:10.1016/j.jnnms.2015.08.005
  • Kataria, H. R., and A. S. Mittal. 2017a. “Velocity, Mass and Temperature Analysis of Gravity-Driven Convection Nanofluid Flow Past an Oscillating Vertical Plate in the Presence of Magnetic Field in a Porous Medium.” Applied Thermal Engineering 110: 864–874. doi:10.1016/j.applthermaleng.2016.08.129
  • Kataria, H. R., and A. S. Mittal. 2017b. “Analysis of Casson Nanofluid Flow in Presence of Magnetic Field and Radiation.” Mathematics Today 33: 99–120.
  • Kataria, H. R., and A. S. Mittal. 2018. “Mathematical Analysis of Three Dimensional Nanofluid Flow in a Rotating System Considering Thermal Interfacial Resistance and Brownian Motion in Suspensions Through Porous Medium.” Mathematics Today 34: 7–24.
  • Khan, M. I., and F. Alzahrani. 2020. “Activation Energy and Binary Chemical Reaction Effect in Nonlinear Thermal Radiative Stagnation Point Flow of Walter-B Nanofluid: Numerical Computations.” International Journal of Modern Physics B 34: 1–16. doi:10.1142/S0217979220501325
  • Khan, M. I., F. Alzahrani, and A. Hobiny. 2020. “Heat Transport and Nonlinear Mixed Convective Nanomaterial Slip Flow of Walter-B Fluid Containing Gyrotactic Microorganisms.” Alexandria Engineering Journal 59: 1761–1769. doi:10.1016/j.aej.2020.04.042
  • Khan, I. M., A. Kumar, T. Hayat, M. Waqas, and R. Singh. 2019. “Entropy Generation in Flow of Carreau Nanofluid.” Journal of Molecular Liquids 278: 677–687. doi:10.1016/j.molliq.2018.12.109
  • Li, Z., M. Sheikholeslami, A. S. Mittal, A. Shafee, and Rizwan ul Haq. 2019. “Nanofluid Heat Transfer in a Porous Duct in the Presence of Lorentz Forces Using the Lattice Boltzmann Method.” European Physical Journal Plus 134: 1–10. doi:10.1140/epjp/i2019-12406-8
  • Liao, S. 2003. Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman and Hall/CRC Press.
  • Madhukesh, J. K., R. N. Kumar, R. J. P. Gowda, B. C. Prasannakumara, G. K. Ramesh, M. I. Khan, S. U. Khan, and Y. M. Chu. 2021. “Numerical Simulation of AA7072-AA7075/Water-Based Hybrid Nanofluid Flow Over a Curved Stretching Sheet with Newtonian Heating: A Non-Fourier Heat Flux Model Approach.” Journal of Molecular Liquids 335: 116103. doi:10.1016/j.molliq.2021.116103
  • Mittal, A. S. 2019. “Study of Radiation Effects on Unsteady 2D MHD Al2O3-Water Flow Through Parallel Squeezing Plates.” International Journal of Ambient Energy, 1–8. doi:10.1080/01430750.2019.1662843
  • Mittal, A. S. 2021. “Analysis of Water-Based Composite MHD Fluid Flow Using HAM.” International Journal of Ambient Energy 42: 1538–1550. doi:10.1080/01430750.2019.1611648
  • Mittal, A. S., and H. R. Kataria. 2018. “Three Dimensional CuO–Water Nanofluid Flow Considering Brownian Motion in Presence of Radiation.” Karbala International Journal of Modern Science 4: 275–286. doi:10.1016/j.kijoms.2018.05.002
  • Mittal, A. S., and H. R. Patel. 2020. “Influence of Thermophoresis and Brownian Motion on Mixed Convection Two Dimensional MHD Casson Fluid Flow with Non-Linear Radiation and Heat Generation.” Physica A: Statistical Mechanics and Its Applications 537: 122710. doi:10.1016/j.physa.2019.122710
  • Mittal, A. S., H. R. Patel, and R. R. Darji. 2019. “Mixed Convection Micropolar Ferrofluid Flow with Viscous Dissipation, Joule Heating and Convective Boundary Conditions.” International Communications in Heat and Mass Transfer 108: 104320. doi:10.1016/J.ICHEATMASSTRANSFER.2019.104320
  • Muhammad, R., M. I. Khan, M. Jameel, and N. B. Khan. 2020a. “Fully Developed Darcy-Forchheimer Mixed Convective Flow Over a Curved Surface with Activation Energy and Entropy Generation.” Computer Methods and Programs in Biomedicine 188: 105298. doi:10.1016/j.cmpb.2019.105298
  • Muhammad, R., M. I. Khan, N. B. Khan, and M. Jameel. 2020b. “Magnetohydrodynamics (MHD) Radiated Nanomaterial Viscous Material Flow by a Curved Surface with Second Order Slip and Entropy Generation.” Computer Methods and Programs in Biomedicine 189: 105294. doi:10.1016/j.cmpb.2019.105294
  • Nayak, M. K., A. K. A. Hakeem, B. Ganga, M. I. Khan, M. Waqas, and O. D. Makinde. 2020. “Entropy Optimized MHD 3D Nanomaterial of Non-Newtonian Fluid: A Combined Approach to Good Absorber of Solar Energy and Intensification of Heat Transport.” Computer Methods and Programs in Biomedicine 186: 105131. doi:10.1016/j.cmpb.2019.105131
  • Nayak, M. K., S. Shaw, M. I. Khan, V. S. Pandey, and M. Nazeer. 2020. “Flow and Thermal Analysis on Darcy-Forchheimer Flow of Copper-Water Nanofluid Due to a Rotating Disk: A Static and Dynamic Approach.” Journal of Materials Research and Technology 9: 7387–7408. doi:10.1016/j.jmrt.2020.04.074
  • Patel, H. R., A. S. Mittal, and R. R. Darji. 2019. “MHD Flow of Micropolar Nanofluid Over a Stretching/Shrinking Sheet Considering Radiation.” International Communications in Heat and Mass Transfer 108: 104322. doi:10.1016/j.icheatmasstransfer.2019.104322
  • Raza, R., F. Mabood, R. Naz, and S. I. Abdelsalam. 2021. “Thermal Transport of Radiative Williamson Fluid Over Stretchable Curved Surface.” Thermal Science and Engineering Progress 23: 100887. doi:10.1016/j.tsep.2021.100887
  • Rosseland, S. 1931. Astrophysik und Atom-TheoretischeGrundlagen. Berlin: Springer-Verlag.
  • Sarada, K., R. J. P. Gowda, I. E. Sarris, R. N. Kumar, and B. C. Prasannakumara. 2021. “Effect of Magnetohydrodynamics on Heat Transfer Behaviour of a Non-Newtonian Fluid Flow Over a Stretching Sheet Under Local Thermal Non-Equilibrium Condition.” Fluids 6: 264. doi:10.3390/fluids6080264
  • Sheikholeslami, M., H. R. Kataria, and A. S. Mittal. 2017. “Radiation Effects on Heat Transfer of Three Dimensional Nanofluid Flow Considering Thermal Interfacial Resistance and Micro Mixing in Suspensions.” Chinese Journal of Physics 55: 2254–2272. doi:10.1016/J.CJPH.2017.09.010
  • Sheikholeslami, M., H. R. Kataria, and A. S. Mittal. 2018. “Effect of Thermal Diffusion and Heat-Generation on MHD Nanofluid Flow Past an Oscillating Vertical Plate Through Porous Medium.” Journal of Molecular Liquids 257: 12–25. doi:10.1016/J.MOLLIQ.2018.02.079
  • Wang, F., M. I. Asjad, M. Zahid, A. Iqbal, H. Ahmad, and M. D. Alsulami. 2021. “Unsteady Thermal Transport Flow of Casson Nanofluids with Generalized Mittag–Leffler Kernel of Prabhakar’s Type.” Journal of Materials Research and Technology 14: 1292–1300. doi:10.1016/j.jmrt.2021.07.029
  • Wang, J., R. Muhammad, M. I. Khan, W. A. Khan, and S. Z. Abbas. 2020. “Entropy Optimized MHD Nanomaterial Flow Subject to Variable Thicked Surface.” Computer Methods and Programs in Biomedicine 189: 105311. doi:10.1016/j.cmpb.2019.105311
  • Yusuf, T. A., F. Mabood, B. C. Prasannakumara, and I. E. Sarris. 2021. “Magneto-Bioconvection Flow of Williamson Nanofluid Over an Inclined Plate with Gyrotactic Microorganisms and Entropy Generation.” Fluids 6: 109. doi:10.3390/fluids6030109

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.