66
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Quadratic convection in a power-law fluid with activation energy and suction/injection effects

ORCID Icon & ORCID Icon
Pages 822-834 | Received 05 Aug 2021, Accepted 16 Nov 2021, Published online: 14 Dec 2022

References

  • Abbas, Z., M. Sheikh, and S. Motsa. 2016. “Numerical Solution of Binary Chemical Reaction on Stagnation Point Flow of Casson Fluid over a Stretching/Shrinking Sheet with Thermal Radiation.” Energy 95: 12–20. doi:10.1016/j.energy.2015.11.039.
  • Ahmed, J., A. Begum, A. Shahzad, and R. Ali. 2016. “MHD Axisymmetric Flow of Power-Law Fluid over an Unsteady Stretching Sheet with Convective Boundary Conditions.” Results in Physics 6: 973–981. doi:10.1016/j.rinp.2016.11.013.
  • Ahmed, F., M. Iqbal, and N. S. Akbar. 2021. “Viscous Dissipation and Joule Heating Effects on Forced Convection Power Law Fluid Flow through Annular Duct.” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406221991180. doi:10.1177/0954406221991180.
  • Bhuvaneswari, M., S. Eswaramoorthi, S. Sivasankaran, and A. K. Hussein. 2019. “Cross-Diffusion Effects on MHD Mixed Convection Over A Stretching Surface in A Porous Medium with Chemical Reaction and Convective Condition.” Engineering Transactions 67 (1): 3–19. Doi:10.24423/EngTrans.820.20190308.
  • Chen, C. H. 2008. “Effects of Magnetic Field and Suction/Injection on Convection Heat Transfer of Non-Newtonian Power-Law Fluids Past a Power-Law Stretched Sheet with Surface Heat Flux.” International Journal of Thermal Sciences 47 (7): 954–961. doi:10.1016/j.ijthermalsci.2007.06.003.
  • Chen, C. H. 2009. “Magneto-Hydrodynamic Mixed Convection of a Power-Law Fluid Past a Stretching Surface in the Presence of Thermal Radiation and Internal Heat Generation/Absorption.” International Journal of Non-Linear Mechanics 44 (6): 596–603. doi:10.1016/j.ijnonlinmec.2009.02.004.
  • Cheng, C. Y. 2000. “Natural Convection Heat and Mass Transfer near a Vertical Wavy Surface with Constant Wall Temperature and Concentration in a Porous Medium.” International Communications in Heat and Mass Transfer 27 (8): 1143–1154. doi:10.1016/S0735-1933(00)00201-3.
  • Cheng, C. Y. 2006. “Natural Convection Heat and Mass Transfer of Non-Newtonian Power-Law Fluids with Yield Stress in Porous Media from a Vertical Plate with Variable Wall Heat and Mass Fluxes.” International Communications in Heat and Mass Transfer 33 (9): 1156–1164. doi:10.1016/j.icheatmasstransfer.2006.06.006.
  • Gireesha, B. J., G. Sowmya, M. Ijaz Khan, and Hakan F. Oztop. 2020. “Flow of Hybrid Nanofluid across a Permeable Longitudinal Moving Fin along with Thermal Radiation and Natural Convection.” Computer Methods and Programs in Biomedicine 185: 105166. doi:10.1016/j.cmpb.2019.105166.
  • Habib, U., T. Hayat, S. Ahmad, and M. S. Alhodaly. 2021. “Entropy Generation and Heat Transfer Analysis in Power-Law Fluid Flow: Finite Difference Method.” International Communications in Heat and Mass Transfer 122: 105–111.
  • Hayat, T., M. Hussain, S. Shehzad, and A. Alsaedi. 2016. “Flow of a Power-Law Nanofluid Past a Vertical Stretching Sheet with a Convective Boundary Condition.” Journal of Applied Mechanics and Technical Physics 57 (1): 173–179.
  • Hossain, M. A., and H. S. Takhar. 1996. “Radiation Effect on Mixed Convection along a Vertical Plate with Uniform Surface Temperature.” Heat and Mass Transfer 31 (4): 243–248. doi:10.1007/BF02328616.
  • Huang, C. J. 2018. “Influence of Non-Darcy and MHD on Free Convection of Non-Newtonian Fluids over a Vertical Permeable Plate in a Porous Medium with Soret/Dufour Effects and Thermal Radiation.” International Journal of Thermal Sciences 130: 256–263. doi:10.1016/j.ijthermalsci.2018.04.019.
  • Kandasamy, R., P. Loganathan, and P. P. Arasu. 2011. “Scaling Group Transformation for MHD Boundary-Layer Flow of a Nanofluid Past a Vertical Stretching Surface in the Presence of Suction/Injection.” Nuclear Engineering and Design 241 (6): 2053–2059. doi:10.1016/j.nucengdes.2011.04.011.
  • Khan, M. I., and F. Alzahrani. 2021. “Nonlinear Dissipative Slip Flow of Jeffrey Nanomaterial towards a Curved Surface with Entropy Generation and Activation Energy.” Mathematics and Computers in Simulation 185: 47–61.
  • Khan, M. I., F. Alzahrani, A. Hobiny, and Z. Ali. 2020. “Fully Developed Second Order Velocity Slip Darcy-Forchheimer Flow by a Variable Thicked Surface of Disk with Entropy Generation.” International Communications in Heat and Mass Transfer 117: 104778. doi:10.1016/j.icheatmasstransfer.2020.104778.
  • Khan, M. I., T. A. Khan, S. Qayyum, T. Hayat, M. I. Khan, and A. Alsaedi. 2018. “Entropy Generation Optimization and Activation Energy in Nonlinear Mixed Convection Flow of a Tangent Hyperbolic Nanofluid.” The European Physical Journal Plus 133 (8): 1–20. doi:10.1140/epjp/i2018-12093-y.
  • Khidir, A. A., and A. F. Aljohani. 2021. “On Successive Linearization Method for Differential Equations with Nonlinear Conditions.” International Journal of Nonlinear Sciences and Numerical Simulation, Article number: 000010151520190278. doi:10.1515/ijnsns-2019-0278.
  • Khidir, A. A., M. Narayana, P. Sibanda, and P. Murthy. 2015. “Natural Convection from a Vertical Plate Immersed in a Power-Law Fluid Saturated Non-Darcy Porous Medium with Viscous Dissipation and Soret Effects.” Afrika Matematika 26 (7): 1495–1518. doi:10.1007/s13370-014-0301-8.
  • Kumar, S., and C. Diwakar. 2013. “A Mathematical Model of Power Law Fluid with An Application of Blood Flow Through An Artery with Stenosis.” Advances in Applied Mathematically Bio-Sciences 4 (2): 51–61.
  • Mahanthesh, B., J. Mackolil, M. Radhika, and W. Al-Kouz. 2021. “Significance of Quadratic Thermal Radiation and Quadratic Convection on Boundary Layer Two-Phase Flow of a Dusty Nanoliquid Past a Vertical Plate.” International Communications in Heat and Mass Transfer 120: 105029.
  • Majeed, A., A. Zeeshan, and F. Noori. 2019. “Numerical Study of Darcy-Forchheimer Model with Activation Energy Subject to Chemically Reactive Species and Momentum Slip of Order Two.” AIP Advances 9 (4): 045035. doi:10.1063/1.5095546.
  • Makinde, O. D., and A. Aziz. 2011. “Boundary Layer Flow of a Nanofluid Past a Stretching Sheet with a Convective Boundary Condition.” International Journal of Thermal Sciences 50 (7): 1326–1332. doi:10.1016/j.ijthermalsci.2011.02.019.
  • Mallikarjuna, B., A. M. Rashad, Ahmed Kadhim Hussein, and S. Hariprasad Raju. 2016. “Transpiration and Thermophoresis Effects on Non-Darcy Convective Flow Past A Rotating Cone with Thermal Radiation.” Arabian Journal for Science and Engineering 41 (11): 4691–4700. doi:10.1007/s13369-016-2252-x.
  • Mandal, I. C., and S. Mukhopadhyay. 2019. “Eyring-Powel Fluid Flow Past a Power-Law Stretching Permeable Sheet in a Free Stream Moving With Power-Law Velocity in the Presence of Convective Boundary Condition.” International Journal of Ambient Energy, 1–10. doi:10.1080/01430750.2019.1691651.
  • Micula, S., and I. Pop. 2021. “Free Convection inside a Porous Square Cavity with Convective Boundary Condition Using Spline Functions.” Boundary Value Problems 2021 (1): 1–13. doi:10.1186/s13661-021-01533-6.
  • Mishra, S., Ranjan, S. Baag, G. C. Dash, and M. R. Acharya. 2020. “Numerical Approach to MHD Flow of Power-Law Fluid on a Stretching Sheet with Non-uniform Heat Source.” Nonlinear Engineering 9 (1): 81–93. doi:10.1515/nleng-2018-0026/html.
  • Molla, M. M., and M. A. Hossain. 2007. “Radiation Effect on Mixed Convection Laminar Flow along a Vertical Wavy Surface.” International Journal of Thermal Sciences 46 (9): 926–935. doi:10.1016/j.ijthermalsci.2006.10.010.
  • Murthy, P., and P. Singh. 1999. “Heat and Mass Transfer by Natural Convection in a Non-Darcy Porous Medium.” Acta Mechanica 138 (3-4): 243–254.
  • Mustafa, M., A. Mushtaq, T. Hayat, and A. Alsaedi. 2017. “Numerical Study of MHD Viscoelastic Fluid Flow with Binary Chemical Reaction and Arrhenius Activation Energy.” International Journal of Chemical Reactor Engineering 15 (1): 127–135. doi:10.1515/ijcre-2016-0131.
  • Naveen, P., and Ch. RamReddy. 2019. “Soret and Viscous Dissipation Effects on MHD Flow Along an Inclined Channel: Nonlinear Boussinesq Approximation.” In Numerical Heat Transfer and Fluid Flow, edited by D. Srinivasacharya, and K. Reddy, 267–274. Singapore: Springer.
  • Pal, D., and S. Chatterjee. 2013. “Soret and Dufour Effects on MHD Convective Heat and Mass Transfer of a Power-Law Fluid over an Inclined Plate with Variable Thermal Conductivity in a Porous Medium.” Applied Mathematics and Computation 219 (14): 7556–7574. doi:10.1016/j.amc.2012.10.119.
  • Pal, D., and S. Chatterjee. 2019. “Convective-Radiative Double-Diffusion Heat Transfer in Power-Law Fluid due to a Stretching Sheet Embedded in Non-Darcy Porous Media with Soret-Dufour Effects.” International Journal for Computational Methods in Engineering Science and Mechanics 20 (4): 269–282.
  • Pantokratoras, A., and E. Magyari. 2009. “EMHD Free-Convection Boundary-Layer Flow from a Riga-Plate.” Journal of Engineering Mathematics 64 (3): 303–315.
  • Partha, M. 2010. “Nonlinear Convection in a Non-Darcy Porous Medium.” Applied Mathematics and Mechanics 31 (5): 565–574. doi:10.1007/s10483-010-0504-6.
  • RamReddy, C., P. Naveen, and D. Srinivasacharya. 2017. “Quadratic Convective Flow of a Micropolar Fluid along an Inclined Plate in a Non-Darcy Porous Medium with Convective Boundary Condition.” Nonlinear Engineering 6 (2): 139–151. doi:10.1515/nleng-2016-0073.
  • Ramzan, M., N. Ullah, J. D. Chung, D. Lu, and U. Farooq. 2017. “Buoyancy Effects on the Radiative Magneto Micropolar Nanofluid Flow with Double Stratification, Activation Energy and Binary Chemical Reaction.” Scientific Reports 7 (1): 1–15. doi:10.1038/s41598-017-13140-6.
  • Shenoy, A. 1993. “Darcy-Forchheimer Natural, Forced and Mixed Convection Heat Transfer in Non-Newtonian Power-Law Fluid Saturated Porous Media.” Transport in Porous Media 11 (3): 219–241. doi:10.1007/BF00614813.
  • Shenoy, A. 1994. “Non-Newtonian Fluid Heat Transfer in Porous Media.” Advances in Heat Transfer 24: 102–191. doi:10.1016/S0065-2717(08)70233-8.
  • Shit, G., A. Mondal, A. Sinha, and P. Kundu. 2016. “Electro-Osmotic Flow of Power-Law Fluid and Heat Transfer in a Micro-Channel with Effects of Joule Heating and Thermal Radiation.” Physica A: Statistical Mechanics and its Applications 462: 1040–1057. doi:10.1016/j.physa.2016.06.142.
  • Singh, P., and K. Tewari. 1993. “Non-Darcy Free Convection from Vertical Surfaces in Thermally Stratified Porous Media.” International Journal of Engineering Science 31 (9): 1233–1242. doi:10.1016/0020-7225(93)90128-H.
  • Tencer, M., J. S. Moss, and T. Zapach. 2004. “Arrhenius Average Temperature: The Effective Temperature for Non-Fatigue Wearout and Long Term Reliability in Variable Thermal Conditions and Climates.” IEEE Transactions on Components and Packaging Technologies 27 (3): 602–607. doi:10.1109/TCAPT.2004.831834.
  • Vasu, B., R. Gorla, P. Murthy, and O. A. Beg. 2019. “Entropy Analysis of a Convective Film Flow of a Power-Law Fluid with Nanoparticles along an Inclined Plate.” Journal of Applied Mechanics and Technical Physics 60 (5): 827–841. doi:10.1134/S0021894419050067.
  • Zemedu, C., and W. Ibrahim. 2020. “Nonlinear Convection Flow of Micropolar Nanofluid due to a Rotating Disk with Multiple Slip Flow.” Mathematical Problems in Engineering 2020, Article ID 4735650. doi:10.1155/2020/4735650.
  • Zhang, T., S. U. Khan, M. Imran, I. Tlili, H. Waqas, and N. Ali. 2020. “Activation Energy and Thermal Radiation Aspects in Bioconvection Flow of Rate-Type Nanoparticles Configured by a Stretching/Shrinking Disk.” Journal of Energy Resources Technology 142 (11): 112102. Paper No: JERT-19-1813. doi:10.1115/1.4047249.
  • Zhao, J. 2020. “Finite Volume Method for Fractional Maxwell Viscoelastic Fluid over a Moving Plate with Convective Boundary Condition.” Journal of Heat Transfer 142 (11): 111802. Paper No: HT-20-1106. doi:10.1115/1.4047644.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.