96
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Hydromagnetic slip flow and heat transfer treatment of Maxwell fluid with hybrid nanostructure: low Prandtl numbers

, ORCID Icon, & ORCID Icon
Pages 947-957 | Received 15 Jun 2022, Accepted 28 Nov 2022, Published online: 21 Dec 2022

References

  • Abbas, N., S. Nadeem, A. Saleem, M. Malik, A. Issakhov, and F. M. Alharbi. 2021. “Models Base Study of Inclined mhd of Hybrid Nanofluid Flow Over Nonlinear Stretching Cylinder.” Chinese Journal of Physics 69: 109–117. doi:10.1016/j.cjph.2020.11.019
  • Abbaszadeh, M., A. Ababaei, A. A. A. Arani, and A. A. Sharifabadi. 2017. “MHD Forced Convection and Entropy Generation of CuO – Water Nanofluid in a Microchannel Considering Slip Velocity and Temperature Jump.” Journal of the Brazilian Society of Mechanical Sciences and Engineering 39: 775–790. doi:10.1007/s40430-016-0578-7
  • Abo-Elkhair, R. E., M. M. Bhatti, and Kh.S Mekheimer. 2021. “Magnetic Force Effects on Peristaltic Transport of Hybrid bio-Nanofluid (Au–Cu Nanoparticles) with Moderate Reynolds Number: An Expanding Horizon.” International Communications in Heat and Mass Transfer 123: 105228. doi:10.1016/j.icheatmasstransfer.2021.105228
  • Ahmad, F., S. Abdal, H. Ayed, S. Hussain, S. Suleman, and A. O. Almatroud. 2021. “The Improved Thermal Efficiency of Maxwell Hybrid Nanofluid Comprising of Graphene Oxide Plus Silver / Kerosene oil Over Stretching Sheet.” Case Studies in Thermal Engineering 27: 101257. doi:10.1016/j.csite.2021.101257
  • Al-Kouz, W., K. Swain, B. Mahanthesh, and W. Jamshed. 2021. “Significance of Exponential Space-Based Heat Source and Inclined Magnetic Field on Heat Transfer of Hybrid Nanoliquid with Homogeneous–Heterogeneous Chemical Reactions.” Heat Transfer 50: 4086–4102. doi:10.1002/htj.22065
  • Algehyne, E. A., E. R. El-Zahar, S. H. Elhag, et al. 2022. “Investigation of Thermal Performance of Maxwell Hybrid Nanofluid Boundary Value Problem in Vertical Porous Surface via Finite Element Approach.” Scientific Reports 12: 2335. doi:10.1038/s41598-022-06213-8
  • Ali, R., M. I. Asjad, A. Aldalbahi, et al. 2021. “Convective Flow of a Maxwell Hybrid Nanofluid due to Pressure Gradient in a Channel.” Journal of Thermal Analysis and Calorimetry 143: 1319–1329. doi:10.1007/s10973-020-10304-x
  • Ali, B., R. A. Naqvi, Y. Nie, S. A. Khan, M. T. Sadiq, A. U. Rehman, and S. Abdal. 2020. “Variable Viscosity Effects on Unsteady mhd an Axisymmetric Nanofluid Flow Over a Stretching Surface with Thermo-Diffusion: Fem Approach.” Symmetry 12 (2): 234. doi:10.3390/sym12020234
  • Almakki, M., S. Dey, S. Mondal, and P. Sibanda. 2017. “On Unsteady Three-Dimensional Axisymmetric MHD Nanofluid Flow with Entropy Generation and Thermo-Diffusion Effects on a Non-Linear Stretching Sheet.” Entropy 19: 168. doi:10.3390/e19070168
  • Anjum, A., S. Masood, M. Farooq, N. Rafiq, and M. Y. Malik. 2021. “Investigation of Binary Chemical Reaction in Magnetohydrodynamicnanofluid Flow with Double Stratification.” Advances in Mechanical Engineering 13: 1–10. doi:10.1177/1687814021101626
  • Awais, M., S. E. Awan, M. A. Z. Raja, N. Parveen, W. U. Khan, M. Y. Malik, and Y. He. 2021. “Effects of Variable Transport Properties on Heat and Mass Transfer in MHD Bioconvective Nanofluid Rheology with Gyrotactic Microorganisms: Numerical Approach.” Coatings 11: 1–19. doi:10.3390/coatings11020231
  • Aziz, A., W. Jamshed, Y. Ali, and M. Shams. 2020. “Heat Transfer and Entropy Analysis of Maxwell Hybrid Nanofluid Including Effects of Inclined Magnetic Field, Joule Heating and Thermal Radiation.”Discrete & Continuous Dynamical Systems 13 (10): 2667–2690. doi:10.3934/dcdss.2020142
  • Babu, J. R., K. K. Kumar, and S. S. Rao. 2017. “State-of-art Review on Hybrid Nanofluids, Renew.” Renewable and Sustainable Energy Reviews 77: 551–565. doi:10.1016/j.rser.2017.04.040
  • Basavarajappa, M., T. Muhammad, G. Lorenzini, et al. 2022. “Darcy–ForchheimerNanoliquid Flow and Radiative Heat Transport Over Convectively Heated Surface with Chemical Reaction.” Journal of Engineering Thermophysics 31: 261–273. doi:10.1134/S1810232822020072
  • Bég, O. A., M. J. Uddin, T. A. Bég, et al. 2020. “Numerical Study of Self-Similar Natural Convection Mass Transfer from a Rotating Cone in Anisotropic Porous Media with Stefan Blowing and Navier Slip.” Indian Journal of Physics 94: 863–877. doi:10.1007/s12648-019-01520-9
  • Choi, S. U., and J. A. Eastman. 1995. “Enhancing Thermal Conductivity of Fluids with Nanoparticles.” (No. ANL/MSD/CP-84938; CONF-951135-29) ASME International Mechanical Engineering Congress and Exhibition, San Francisco, CA (United States).
  • Chu, Y. M., R. Ali, M. I. Asjad, et al. 2020. “Heat Transfer Flow of Maxwell Hybrid Nanofluids due to Pressure Gradient Into Rectangular Region.” Scientific Reports 10: 16643. doi:10.1038/s41598-020-73174-1
  • Cimpean, D. S., M. A. Sheremet, and I. Pop. 2020. “Mixed Convection of Hybrid Nanofluid in a Porous Trapezoidal Chamber.” International Communications in Heat and Mass Transfer 116: 104627. doi:10.1016/j.icheatmasstransfer.2020.104627
  • Das, S., S. Chakraborty, R. N. Jana, and O. D. Makinde. 2015. “Entropy Analysis of Unsteady Magneto-Nanofluid Flow Past Accelerating Stretching Sheet with Convective Boundary Condition.” Applied Mathematics and Mechanics 36: 1593–1610. doi:10.1007/s10483-015-2003-6
  • Das, S., R. N. Jana, and O. D. Makinde. 2017. “MHD Flow of Cu-Al2O3/Water Hybrid Nanofluid in Porous Channel: Analysis of Entropy Generation.” Defect Diffus Forum 377: 42–61. doi:10.4028/www.scientific.net/DDF.377.42
  • Esfe, M. H., M. Bahiraei, and A. Mir. 2020. “Application of Conventional and Hybrid Nanofluids in Different Machining Processes: A Critical Review.” Advances in Colloid and Interface Science 282: 102199. doi:10.1016/j.cis.2020.102199
  • Ferdows, M., M. Shamshuddin, S. O. Salawu, et al. 2022. “Thermal Cooling Performance of Convective non-Newtonian Nanofluid Flowing with Variant Power-Index Across Moving Extending Surface.” Scientific Reports 12: 8714. doi:10.1038/s41598-022-12333-y
  • Gopalakrishnan, K. S., I. S. Oyelakin, S. Mondal, and R. P. Sharma. 2022. “Impact of Joule Heating and Nonlinear Thermal Radiation on the Flow of Cassonnanofluid with Entropy Generation.” International Journal of Ambient Energy 43 (1): 5687–5710. doi:10.1080/01430750.2021.1973559.
  • Hayat, T., and S. Nadeem. 2017. “Heat Transfer Enhancement with Ag–CuO/Water Hybrid Nanofluid.” Results in Physics 7: 2317–2324. doi:10.1016/j.rinp.2017.06.034
  • Humane, P. P., V. S. Patil, A. B. Patil, M. Shamshuddin, and G. R. Rajput. 2022. “Dynamics of Multiple Slip Boundaries Effect on MHD Casson-Williamson Double-Diffusive Nanofluid Flow Past an Inclined Magnetic Stretching Sheet.” Proceedings of the Institution of Mechanical Engineers.” Part E: Journal of Process Mechanical Engineering 236 (5): 1906–1926. doi:10.1177/09544089221078153.
  • Hussain, F., S. Abdal, Z. Abbas, N. Hussain, M. Adnan, B. Ali, R. M. Zulqarnain, L. Ali, and S. Younas. 2020. “Buoyancy Effect on MHD Slip Flow and Heat Transfer of a Nanofluid Flow Over a Vertical Porous Plate.” SciInq Rev 4 (1): 01–16. doi:10.32350/sir.41.01.
  • Jamshed, W., and A. Aziz. 2018. “A Comparative Entropy Based Analysis of Cu and Fe3O4/Methanol Powell- Eyringnanofluid in Solar Thermal Collectors Subjected to Thermal Radiation, Variable Thermal Conductivity and Impact of Different Nanoparticles Shape.” Results in Physics 9: 195–205. doi:10.1016/j.rinp.2018.01.063
  • Jamshed, W., C. Şirin, F. Selimefendigil, M. Shamshuddin, Y. Altowairqi, and M. R. Eid. 2021. “Thermal Characterization of Coolant Maxwell Type Nanofluid Flowing in Parabolic Trough Solar Collector (PTSC) Used Inside Solar Powered Ship Application.” Coatings 11: 1552. doi:10.3390/coatings11121552
  • Kang, H. U., S. H. Kim, and Je.M Oh. 2006. “Estimation of Thermal Conductivity of Nanofluid Using Experimental Effective Particle Volume.” Experimental Heat Transfer 19: 181–191. doi:10.1080/08916150600619281
  • Karimipour, A., A. H. Nezhad, A. D’Orazio, M. H. Esfe, M. R. Safaei, and E. Shirani. 2015. “Simulation of Copper – Water Nanofluid in a Microchannel in Slip Flow Regime Using the Lattice Boltzmann Method.” European Journal of Mechanics - B/Fluids 49: 89–99. doi:10.1016/j.euromechflu.2014.08.004
  • Karimipour, A., A. H. Nezhad, A. D’Orazio, and E. Shirani. 2013. “The Effects of Inclination Angle and Prandtl Number on the Mixed Convection in the Inclined lid Driven Cavity Using Lattice Boltzmann Method.” J TheorAppl Mech 51: 447–462.
  • Kelson, N., and A. Desseaux. 2000. “Note on Porous Rotating Disk Flow.” ANZIAM Journal 42: C837–C855. doi:10.21914/anziamj.v42i0.624
  • Khan, K. A., A. R. Seadawy, and A. Jhangeer. 2021. “Numerical Appraisal Under the Influence of the Time Dependent Maxwell Fluid Flow Over a Stretching Sheet.” Mathematical Methods in the Applied Sciences 44: 265–5279. doi:10.1002/mma.6729
  • Li, Y. X., K. Al-Khaled, S. U. Khan, T. C. Sun, M. I. Khan, and M. Malik. 2021. “Bio-convective Darcy Forchheimer Periodically Accelerated Flow of non-Newtonian Nanofluid with Cattaneo–Christov and Prandtl Effective Approach.” Case Studies in Thermal Engineering 26: 101102. doi:10.1016/j.csite.2021.101102
  • Mahanthesh, B., W. Al-Kouz, K. Swain, and P. K. Rout. 2021. “Computational Modeling of Heat Transfer in Magneto-non-Newtonian Material in a Circular Tube with Viscous and Joule Heating.” Heat Transfer 50: 6703–6718. doi:10.1002/htj.22199
  • Mahian, O., A. Kianifar, C. Kleinstreuer, Moh’d, A Al -Nimr, I. Pop, A. Z. Sahin, and S. Wongwises. 2013. “A Review of Entropy Generation in Nanofluid Flow.” International Journal of Heat and Mass Transfer 65: 514–532. doi:10.1016/j.ijheatmasstransfer.2013.06.010
  • Maxwell, J. C. I. V. 1867. “On the Dynamical Theory of Gases.” Philosophical Transactions of the Royal Society of London 157: 49–88. doi:10.1098/rstl.1867.0004
  • Maxwell, J. C. 1873. A Treatise on Electricity and Magnetism. Oxford: Clarendon Press.
  • Muhammad, A., P. Kumam, D. Khan, and W. Watthayu. 2021. “Thermal Performance of GO-MoS2/Engine oil as Maxwell Hybrid Nanofluid Flow with Heat Transfer in Oscillating Vertical Cylinder.” Case Studies in Thermal Engineering 27: 101290. doi:10.1016/j.csite.2021.101300
  • Murshed, S. M. S., K. C. Leong, and C. Yang. 2008. “Thermophysical and Electrokinetic Properties of Nanofluids–a Critical Review.” ApplTherm Eng 28: 2109–2125. doi:10.1016/j.applthermaleng.2008.01.005.
  • Mustafa, M., J. A. Khan, T. Hayat, and A. Alsaedi. 2015. “Analytical and Numerical Solutions for Axisymmetric Flow of Nanofluid due to non-Linearly Stretching Sheet.” International Journal of Non-Linear Mechanics 71: 22–29. doi:10.1016/j.ijnonlinmec.2015.01.005
  • Nayak, M. K., S. D. Oloniijn, S. Mondal, S. P. Goqo, and P. Sibanda. 2020. “Flow and Heat Transfer Over a Thin Needle Immersed in a Porous Medium Filled with an Al2O3-Water Nanofluids Using Buongiorno's two-Phase Model.” International Journal of Ambient Energy 43 (1): 3652–3660. doi:10.1080/01430750.2020.1845238.
  • Oyelakin, I. S., P. C. Lalramneihmawii, S. Mondal, and P. Sibanda. 2020. “Analysis of Double-Diffusion Convection on Three-Dimensional MHD Stagnation Point Flow of a Tangent Hyperbolic Cassonnanofluid.” International Journal of Ambient Energy 43 (1): 1854–1865. doi:10.1080/01430750.2020.1722964.
  • Rahman, M., M. Ferdows, M. Shamshuddin, A. Koulali, and M. R. Eid. 2022. “Aiding (Opponent) Flow of Hybrid Copper–Aluminum Oxide Nanofluid Towards an Exponentially Extending (Lessening) Sheet with Thermal Radiation and Heat Source (Sink) Impact.” Journal of Petroleum Science and Engineering 215: 110649. doi:10.1016/j.petrol.2022.110649
  • Rahman, M. M., and A. Postelnicu. 2010. “Effects of Thermophoresis on the Forced Convective Laminar Flow of a Viscous Incompressible Fluid Over a Rotating Disk.” Mechanics Research Communications 37: 598–603. doi:10.1016/j.mechrescom.2010.07.002
  • Rao, P. S., and M. D. Shamshuddin. 2021. “Second-order Slip and Newtonian Cooling Impact on Unsteady Mixed Convective Radiative Chemically Reacting Fluid with Hall Current and Cross-Diffusion Over a Stretching Sheet.” Heat Transfer 50: 7380–7405. doi:10.1002/htj.22234
  • Rashidi, S., M. Bovand, S. Akar, and R. Ellahi. 2018. “Volume of Fluid Model to Simulate the Nanofluid Flow and Entropy Generation in a Single Slope Solar Still.” Renewable Energy 115: 400–410. doi:10.1016/j.renene.2017.08.059
  • Rashidi, M. M., N. Kavyani, and S. Abelman. 2014. “Investigation of Entropy Generation in MHD and Slip Flow Over a Rotating Porous Disk with Variable Properties.” International Journal of Heat and Mass Transfer 70: 892–917. doi:10.1016/j.ijheatmasstransfer.2013.11.058
  • Sarkar, J., P. Ghosh, and A. Adil. 2015. “A Review on Hybrid Nanofluids: Recent Research, Development and Applications.” Renewable and Sustainable Energy Reviews 43: 164–177. doi:10.1016/j.rser.2014.11.023
  • Scherer, C., and N. A. M. Figueiredo. 2005. “Ferrofluids: Properties and Applications.” Brazilian Journal of Physics 35: 718–727. doi:10.1590/S0103-97332005000400018
  • Senapati, M., S. K. Parida, K. Swain, and S. M. Ibrahim. 2020. “Analysis of Variable Magnetic Field on Chemically Dissipative MHD Boundary Layer Flow of Casson Fluid Over a Nonlinearly Stretching Sheet with Slip Conditions.” International Journal of Ambient Energy 43 (1): 3712–3726. doi:10.1080/01430750.2020.1831601.
  • Shahsavar, A., P. T. Sardari, and D. Toghraie. 2019. “Free Convection Heat Transfer and Entropy Generation Analysis of Water - Fe3O4/CNT Hybrid Nanofluid in a Concentric Annulus.” International Journal of Numerical Methods for Heat & Fluid Flow 29: 915–934. doi:10.1108/HFF-08-2018-0424
  • Shamshuddin, M., S. O. Salawu, H. A. Ogunseye, and F. Mabood. 2020. “Dissipative Power-law Fluid Flow Using Spectral Quasi Linearization Method Over an Exponentially Stretchable Surface with Hall Current and Power-law Slip Velocity.” International Communications in Heat and Mass Transfer 119: 104933. doi:10.1016/j.icheatmasstransfer.2020.104933
  • Shehzad, S. A., F. Mabood, A. Rauf, and I. Tlili. 2020. “Forced Convective Maxwell Fluid Flow Through Rotating Disk Under the Thermophoretic Particles Motion.” International Communications in Heat and Mass Transfer 116: 104693. doi:10.1016/j.icheatmasstransfer.2020.104693
  • Sheremet, M., I. Pop, H. F. Öztop, and N. A. Hamdeh. 2017. “Natural Convection of Nanofluid Inside a Wavy Cavity with a non-Uniform Heating: Entropy Generation Analysis.” International Journal of Numerical Methods for Heat & Fluid Flow 27: 958–980. doi:10.1108/HFF-02-2016-0063
  • Sun, X., I. L. Animasaun, K. Swain, N. A. Shah, A. Wakif, and P. O. Olanrewaju. 2022. “Significance of Nanoparticle Radius, Inter-Particle Spacing, Inclined Magnetic Field, and Space-Dependent Internal Heating: The Case of Chemically Reactive Water Conveying Copper Nanoparticles.” Zeitschrift Fur Angewandte Mathematik Und Mechanik 102. doi:10.1002/zamm.202100094.
  • Swain, K., I. L. Animasaun, and S. M. Ibrahim. 2021. “Influence of Exponential Space-Based Heat Source and Joule Heating on Nanofluid Flow Over an Elongating/Shrinking Sheet with an Inclined Magnetic Field.” International Journal of Ambient Energy 43 (1): 4045–4057. doi:10.1080/01430750.2021.1873854.
  • Swain, K., F. Mebarek-Oudina, and S. M. Abo-Dahab. 2022. “Influence of MWCNT/Fe3O4 Hybrid Nanoparticles on an Exponentially Porous Shrinking Sheet with Chemical Reaction and Slip Boundary Conditions.” Journal of Thermal Analysis and Calorimetry 147: 1561–1570. doi:10.1007/s10973-020-10432-4
  • Thumma, T., N. A. Ahammad, K. Swain, I. L. Animasauan, and S. R. Mishra. 2022. “Increasing Effects of Coriolis Force on the Cupric Oxide and Silver Nanoparticles Based Nanofluid Flow When Thermal Radiation and Heat Source/Sink are Significant.” Waves in Random and Complex Media. doi:10.1080/17455030.2022.2032471.
  • Vieru, D., W. Akhtar, C. Fetecau, and C. Fetecau. 2007. “Starting Solutions for the Oscillating Motion of a Maxwell Fluid in Cylindrical Domains.” Meccanica 42: 573–583. doi:10.1007/s11012-007-9081-7
  • Yang, L., W. Ji, M. Mao, and J. N. Huang. 2020. “An Updated Review on the Properties, Fabrication and Application of Hybrid-Nanofluids Along with Their Environmental Effects.” Journal of Cleaner Production 257: 120408. doi:10.1016/j.jclepro.2020.120408

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.