217
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of nozzle geometry on wall static pressure coefficient of the submerged turbulent jet impinging on a smooth flat surface

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1959-1968 | Received 16 May 2022, Accepted 13 Mar 2023, Published online: 20 Apr 2023

References

  • Attalla, M., H. M. Maghrabie, H. M. Qayyum, A. G. Al-Hasnawi, and E. Specht. 2017. “Influence of the Nozzle Shape on Heat Transfer Uniformity for In-Line Array of Impinging Air Jets.” Applied Thermal Engineering 120: 160–169. doi:10.1016/j.applthermaleng.2017.03.134.
  • Brignoni, L. A., and S. V. Garimella. 2000. “Effects of Nozzle Inlet Chamfering on Pressure Drop and Heat Transfer in Confined Air Jet Impingement.” International Journal of Heat and Mass Transfer 43: 1133–1139. doi:10.1016/S0017-9310(99)00207-0.
  • Colucci, D. W., and R. Viskanta. 1996. “Effect of Nozzle Geometry on Local Convective Heat Transfer to a Confined Impinging Air Jet.” Experimental Thermal and Fluid Science 13 (1): 71–80. doi:10.1016/0894-1777(96)00015-5.
  • Gardon, R., and C. Akfirat. 1965. “The Role of Turbulence in Determining the Heat Transfer Characteristics of Impinging Jets.” International Journal of Heat and Mass Transfer 8: 1261–1272. doi:10.1016/0017-310(65)90054-2.
  • Gardon, R., and C. Akfirat. 1966. “Heat Transfer Characteristics of Impinging two Dimensional Air Jets.” Journal of Heat Transfer 88: 101–108. doi:10.1115/1.3691449.
  • Garimella, Suresh V., and Boris Nenaydykh. 1996. “Nozzle - Geometry Effects in Liquid Jet Impingement Heat Transfer.” International Journal of Heat and Mass Transfer 39: 2915–2923. doi:10.1016/0017-9310(95)00382-7.
  • Gulati, Puneet, Vadiraj Katti, and S. V. Prabhu. 2009. “Influence of the Shape of the Nozzle on Local Heat Transfer Distribution Between Smooth Flat Surface and Impinging Air Jet.” International Journal of Thermal Sciences 48: 602–617. doi:10.1016/j.ijthermalsci.2008.05.002.
  • Hofmann, H. M., M. Kind, and H. Martin. 2007. “Measurements on Steady State Heat Transfer and Flow Structure and New Correlations for Heat and Mass Transfer in Submerged Impinging Jets.” International Journal of Heat and Mass Transfer 50: 3957–3965. doi:10.1016/j.ijheatmasstransfer.2007.01.023.
  • Hrycak, Peter. 1983. “Heat Transfer from Round Impinging Jets to a Flat Plate.” International Journal of Heat and Mass Transfer 26: 1857–1865. doi:10.1016/S0017-9310(83)80156-2.
  • Jambunathan, K., E. Lai, M. A. Moss, and B. L. Button. 1992. “A Review of Heat Transfer Data for Single Circular Jet Impingement.” International Journal of Heat and Fluid Flow 13: 106–115. doi:10.1016/0142-727X(92)90017-4.
  • Katti, Vadiraj, and S. V. Prabhu. 2008. “Heat Transfer Enhancement on a Flat Surface with Axisymmetric Detached Ribs by Normal Impingement of Circular Air Jet.” International Journal of Heat and Fluid Flow 29: 1279–1294. doi:10.1016/j.ijheatfluidflow.2008.05.003.
  • Lee, J., and S. J. Lee. 2000a. “The Effect of Nozzle Configuration on Stagnation Region Heat Transfer Enhancement of Axisymmetric Jet Impingement.” International Journal of Heat and Mass Transfer 43: 3497–3509. doi:10.1016/S0017-9310(99)00349-X.
  • Lee, J., and S. J. Lee. 2000b. “The Effect of Nozzle Aspect Ratio on Stagnation Region Heat Transfer Characteristics of Elliptic Impinging Jet.” International Journal of Heat and Mass Transfer 43: 555–575. doi:10.1016/S0017-9310(99)00167-2.
  • Lee, D. H., J. Song, and C. J. Myeong. 2004. “The Effect of Nozzle Diameter on Impinging Jet Heat Transfer and Fluid Flow.” Journal of Heat Transfer 126: 554–557. doi:10.1115/1.1777583.
  • Lytle, D., and B. W. Webb. 1994. “Air Jet Impingement Heat Transfer at Low Nozzle Plate Spacings.” International Journal of Heat and Mass Transfer 37: 1687–1697. doi:10.1016/0017-9310(94)90059-0.
  • Moffat, Robert J. 1988. “Describing the Uncertainties in Experimental Results.” Experimental Thermal and Fluid Science 1: 3–17. doi:10.1016/0894-1777(88)90043-X.
  • Pan, Y., J. Stevens, and B. W. Webb. 1992. “Effect of Nozzle Configuration on Transport in the Stagnation Zone of Axisymmetric Impinging Free Surface Liquid Jets: Part 1-Turbulent Flow Structure.” Journal of Heat Transfer 114: 874–879. doi:10.1115/1.2911895.
  • Royne, Anja, and J. Dey Christopher. 2006. “Effect of Nozzle Geometry on Pressure Drop and Heat Transfer in Submerged Jet Arrays.” International Journal of Heat and Mass Transfer 49: 800–804. doi:10.1016/j.ijheatmasstransfer.2005.11.014.
  • Shuja, S. Z., B. S. Yilbas, and M. O. Budair. 2005. “Influence of Conical and Annular Nozzle Geometric Configurations on Flow and Heat Transfer Characteristics due to Flow Impingement Onto a Flat Plate.” Numerical Heat Transfer, Part A 48: 917–939. doi:10.1080/10407780591006868.
  • Shuja, S. Z., B. S. Yilbas, and S. Khan. 2009. “Jet Impingement Onto a Conical Cavity: Effects of Annular Nozzle Outer Angle and Jet Velocity on Heat Transfer and Skin Friction.” International Journal of Thermal Sciences 48: 985–997. doi:10.1016/j.ijthermalsci.2008.07.005.
  • Singh, Dushyant, B. Premachandran, and Sangeeta Kohli. 2013. “Experimental and Numerical Investigation of Jet Impingement Cooling of a Circular Cylinder.” International Journal of Heat and Mass Transfer 60: 672–688. doi:10.1016/j.ijheatmasstransfer.2013.01.008.
  • Singh, Dushyant, B. Premachandran, and Sangeeta Kohli. 2015. “Effect of Nozzle Shape on Jet Impingement Heat Transfer from a Circular Cylinder.” International Journal of Thermal Sciences 96: 45–69. doi:10.1016/j.ijthermalsci.2015.04.011.
  • Stevens, J., Y. Pan, and B. W. Webb. 1992. “Effect of Nozzle Configuration on Transport in the Stagnation Zone of Axisymmetric: Impinging Free Surface Liquid Jets: Part 2-Local Heat Transfer.” Journal of Heat Transfer 114: 880–886. doi:10.1115/1.2911896.
  • Talapati, R. J., and V. V. Katti. 2022. “Influence of Synthetic Air Jet Temperature on Local Heat Transfer Characteristics of Synthetic Air Jet Impingement.” International Communications in Heat and Mass Transfer 130: 105796. doi:10.1016/j.icheatmasstransfer.2021.105796.
  • Talapati, R. J., and V. V. Katti. 2023a. “Influence of Ratio of Nozzle Length to Diameter on Local Heat Transfer Study of an Unconfined Circular Air Jet Impingement.” International Journal of Thermal Sciences 183: 107859. doi:10.1016/j.ijthermalsci.2022.107859.
  • Talapati, R. J., and V. V. Katti. 2023b. “Influence of Turbulator Under the Detached Rib on Heat Transfer Study of Air Jet Impinging on a Flat Surface.” International Journal of Thermal Sciences 184: 107946. doi:10.1016/j.ijthermalsci.2022.107946.
  • Trinh, Xuan Thao, Matthieu Fenot, and Eva Dorignac. 2016. “The Effect of Nozzle Geometry on Local Convective Heat Transfer to Unconfined Impinging Air Jets.” Experimental Thermal and Fluid Science 70: 1–16. doi:10.1016/j.expthermflusci.2015.08.006.
  • Viskanta, R. 1993. “Heat Transfer to Impinging Isothermal Gas and Flame Jets.” Experimental Thermal and Fluid Science 6: 111–134. doi:10.1016/0894-1777(93)90022-B.
  • Wen, Jiwei, Ziwei Qi, Seyed Saleh Behbahani, Xiangjun Pei, and Tom Iseley. 2019. “Research on the Structures and Hydraulic Performances of the Typical Direct Jet Nozzles for Water Jet Technology.” Journal of the Brazilian Society of Mechanical Sciences and Engineering 41: 570. doi:10.1007/s40430-019-2075-2.
  • Yang, Geunyoung, Mansoo Choi, and J. Sik Lee. 1999. “An Experimental Study of Slot Jet Impingement Cooling on Concave Surface: Effects of Nozzle Configuration and Curvature.” International Journal of Heat and Mass Transfer 42: 2199–2209. doi:10.1016/S0017-9310(98)00337-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.