549
Views
53
CrossRef citations to date
0
Altmetric
Original Articles

Towards red‐edge positions less sensitive to canopy biophysical parameters for leaf chlorophyll estimation using properties optique spectrales des feuilles (PROSPECT) and scattering by arbitrarily inclined leaves (SAILH) simulated data

, &
Pages 2241-2255 | Received 10 Apr 2006, Accepted 31 Mar 2007, Published online: 25 Mar 2008

References

  • Atzberger , C. , Jarmer , T. , Schlerf , M. , Kötz , B. and Werner , W. 2003 . “ Retrieval of wheat bio‐physical attributes from hyperspectral data and SAILH+PROSPECT radiative transfer mode. ” . In 3rd EARSeL Workshop on Imaging Spectroscopy Edited by: Habermeyer , M , Müller , A and Holzwarth , S . 473 – 482 . 13–16 May, Herrching, Germany
  • Bacour , C. , Jacquemoud , S. , Tourbier , Y. , Dechambre , M. and Frangi , J.‐P. 2002 . Design and analysis of numerical experiments to compare four canopy reflectance models. . Remote Sensing of Environment , 79 : 72 – 83 .
  • Baret , F. , Jacquemoud , S. , Guyot , G. and Leprieur , C. 1992 . Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands. . Remote Sensing of Environment , 41 : 133 – 142 .
  • Blackburn , G. A. 1998 . Quantifying chlorophylls and caroteniods at leaf and canopy scales: an evaluation of some hyperspectral approaches. . Remote Sensing of Environment , 66 : 273 – 285 .
  • Boegh , E. , SOE GAARD , H. , Broge , N. , HASAGER , C.B. , JENSEN , N.O. , SCHELDE , K. THOMSEN , A. 2002 . Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. . Remote Sensing of Environment , 81 : 179 – 193 .
  • Bonham‐Carter , G. F. 1988 . Numerical procedures and computer program for fitting an inverted Gaussian model to vegetation reflectance data. . Computer and Geosciences , 14 : 339 – 356 .
  • Boochs , F. , Kupfer , G. , Dockter , K. and Kuhbauch , W. 1990 . Shape of the red‐edge as vitality indicator for plants. . International Journal of Remote Sensing , 11 : 1741 – 1753 .
  • Broge , N. H. and Leblanc , E. 2000 . Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. . Remote Sensing of Environment , 76 : 156 – 172 .
  • Buschmann , C. and Nagel , E. 1993 . In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. . International Journal of Remote Sensing , 14 : 711 – 722 .
  • Chappelle , E. W. , Kim , M. S. and McMurtrey III , J. E. 1992 . Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and caroteniods in soybean leaves. . Remote Sensing of Environment , 39 : 239 – 247 .
  • Cho , M. A. and Skidmore , A. K. 2006 . A new technique for extracting the red edge position from hyperspectral data: the linear extrapolation method. . Remote Sensing of Environment , 101 : 181 – 193 .
  • Clevers , J. G. P. W. , De Jong , S. M. , Epema , G. F. , van der Meer , F. , Bakker , W. and Skidmore , A. K. 2002 . Derivation of the red edge index using MERIS standard band setting. . International Journal of Remote Sensing , 23 : 3169 – 3184 .
  • Clevers , J. G. P. W. , Kooistra , L. and Salas , E. A. L. 2004 . Study of heavy metal contamination in river floodplains using the red‐edge position in spectroscopic data. . International Journal of Remote Sensing , 25 : 3883 – 3895 .
  • Collins , W. , Chang , S. H. , Raines , G. , Canney , F. and Ashley , R. 1983 . Airborne biogeophysical mapping of hidden mineral deposits. . Economic Geology and the Bulletin of the Society of Economic Geologists , 78 : 737 – 749 .
  • Collins , W. , Raines , G. L. and Canney , F. C. 1977 . “ Airborne spectroradiometer discrimination of vegetation anomalies over sulphide mineralisation – a remote sensing technique. ” . In Abstract with Programmes 932 – 933 . edited by, Geological Society of America, Seattle, WA, 7–9 November
  • Combal , B. , Baret , F. , Weiss , M. , Trubuil , A. , Macé , D. , Pragnère , A. , Myneni , R. , Knyazikhin , Y. and Wang , L. 2002 . Retrieval of canopy biophysical variables from bidirectional reflectance using prior information to solve the ill‐posed inverse problem. . Remote Sensing of Environment , 84 : 1 – 15 .
  • Curran , P. J. , Windham , W. R. and Gholz , H. L. 1995 . Exploring the relationship between reflectance red edge and chlorophyll concentration in slash pine leaves. . Tree Physiology , 15 : 203 – 206 .
  • Danson , F. M. and Plummer , S. E. 1995 . Red‐edge response to forest leaf area index. . International Journal of Remote Sensing , 16 : 183 – 188 .
  • Daughtry , C. S. T. , Walthall , C. L. , Kim , M. S. , de Colstoun , E. B. and McMurtrey III , J. E. 2000 . Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. . Remote Sensing of Environment , 74 : 229 – 239 .
  • Dawson , T. P. and Curran , P. J. 1998 . A new technique for interpolating red edge position. . International Journal of Remote Sensing , 19 : 2133 – 2139 .
  • Filella , I. and Peñuelas , J. 1994 . The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. . International Journal of Remote Sensing , 15 : 1459 – 1470 .
  • Fourty , T. , Baret , F. , Jacquemoud , S. , Schmuck , G. and Verdebout , J. 1996 . Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems. . Remote Sensing of Environment , 56 : 104 – 117 .
  • Gamon , J. A. , Peñuelas , J. and Field , C. B. 1992 . A narrow‐waveband spectral index that tracks diurnal changes in photosynthetic efficiency. . Remote Sensing of Environment , 41 : 35 – 44 .
  • Gates , D. M. , Keegan , H. J. , Schleter , J. C. and Weidner , V. R. 1965 . Spectral properties of plants. . Applied Optics , 4 : 11 – 20 .
  • Gausman , H. W. 1977 . Reflectance of leaf components. . Remote Sensing of Environment , 6 : 1 – 9 .
  • Gitelson , A. A. and Merzlyak , M. N. 1997 . Remote estimation of chlorophyll content in higher plant leaves. . International Journal of Remote Sensing , 18 : 2691 – 2697 .
  • Goward , S. N. and Huemmrich , K. F. 1992 . Vegetation canopy PAR absorbance and the normalized difference vegetation index: an assessment using the SAIL model. . Remote Sensing of Environment , 39 : 119 – 140 .
  • Guyot , G. and Baret , F. 1988 . “ Utilisation de la haute resolution spectrale pour suivre l'etat des couverts vegetaux. ” . In Proceedings of the 4th International colloquim on spectral signatures of objects in remote sensing, ESA SP‐287 279 – 286 . edited by, Assois, France
  • Haboudane , D. , Miller , J. R. , Pattey , E. , Zarco‐Tejada , P. J. and Strachan , I. B. 2004 . Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. . Remote Sensing of Environment , 90 : 337 – 352 .
  • Haboudane , D. , Miller , J. R. , Tremblay , N. , Zarco‐Tejada , P. J. and Dextraze , L. 2002 . Integrated narrow‐band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. . Remote Sensing of Environment , 81 : 416 – 426 .
  • Hansen , P. M. and Schjoerring , J. K. 2003 . Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. . Remote Sensing of Environment , 86 : 542 – 553 .
  • Hare , E. W. , Miller , J. R. and Edward , G. R. 1984 . “ Studies of vegetation red reflectance edge in geobotanical remote sensing in eastern Canada. ” . In Proceedings of the 9th Canadian Symposium on Remote Sensing , 433 – 440 . Ottawa : Canadian Aeronautics and Space Institute . edited by, St, John's, Newfoundland, 13–17 August
  • Horler , D. N. H. , Barber , J. and Barringer , A. R. 1980 . Effects of heavy metals on the absorbance and reflectance spectra of plants. . International Journal of Remote Sensing , 1 : 121 – 136 .
  • Horler , D. N. H. , Dockray , M. and Barber , J. 1983 . The red edge of plant leaf reflectance. . International Journal of Remote Sensing , 4 : 273 – 288 .
  • Huete , A. R. 1988 . A soil‐adjusted vegetation index (SAVI). . Remote Sensing of Environment , 25 : 295 – 309 .
  • Huete , A. R. , Hua , G. , Qi , J. , Chehbouni , A. and van Leeuwen , W. J. D. 1992 . Normalization of multidirectional red and NIR reflectances with the SAVI. . Remote Sensing of Environment , 41 : 143 – 154 .
  • Jacquemoud , S. , Bacour , C. , Poilve , H. and Frangi , J.‐P. 2000 . Comparison of four radiative transfer models to simulate plant canopies reflectance: direct and inverse mode. . Remote Sensing of Environment , 74 : 471 – 481 .
  • Jacquemoud , S. and Baret , F. 1990 . PROSPECT: a model of leaf optical properties spectra. . Remote Sensing of Environment , 34 : 75 – 91 .
  • Jacquemoud , S. , Baret , F. , Andrieu , B. , Danson , F. M. and Jaggard , K. 1995 . Extraction of vegetation biophysical parameters by inversion of the PROSPECT+SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors. . Remote Sensing of Environment , 52 : 163 – 172 .
  • Jongschaap , R. E. E. and Booij , R. 2004 . Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status. . International Journal of Applied Earth Observation and Geoinformation , 5 : 204 – 218 .
  • Kuusk , A. 1991 . The angular distribution of reflectance and vegetation indices in barley and clover canopies. . Remote Sensing of Environment , 37 : 143 – 151 .
  • Lichtenthaler , H. K. , Gitelson , A. A. and Lang , M. J. 1996 . Non‐destructive determination of chlorophyll content of leaves of a green and area mutant tobacco by reflectance measurements. . Journal of Plant Physiology , 148 : 483 – 493 .
  • Miller , J. R. , Hare , E. W. and Wu , J. 1990 . Quantitative characterization of the red edge reflectance. An inverted‐Gaussian reflectance model. . International Journal of Remote Sensing , 11 : 1755 – 1773 .
  • Mooney , H. A , ed. 1986 . “ Photosynthesis. ” . In Plant ecology , 345 – 373 . Oxford, , UK : Blackwell .
  • Peñuelas , J. , Baret , F. and Filella , I. 1995 . Semi‐empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. . Photosynthetica , 31 : 221 – 230 .
  • Peterson , D. L. , ABER , J.D. , MATSON , P. A. , CARD , D. H. , SWANBERG , N. , WESSMAN , C. SPANNER , M. 1988 . Remote sensing of forest canopy and leaf biochemical contents. . Remote Sensing of Environment , 24 : 85 – 108 .
  • Pu , R. , Gong , P. , Biging , G. S. and Larrieu , M. R. 2003 . Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index. . IEEE Transactions on Geoscience and Remote Sensing , 41 : 916 – 921 .
  • Qi , J. , Moran , M. S. , Cabot , F. and Dedieu , G. 1995 . Normalization of sun/view angle effects using spectral albedo‐based vegetation indices. . Remote Sensing of Environment , 52 : 207 – 217 .
  • Verhoef , W. 1984 . Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. . Remote Sensing of Environment , 16 : 125 – 141 .
  • Webster , R. 2000 . Statistics to support soil research and their presentation. . European Journal of Soil Science , 52 : 331 – 340 .
  • Wenjiang , H. , Jihua , W. , Zhijie , W. , Jiang , Z. , Liangyun , L. and Jindi , W. 2004 . Inversion of foliar biochemical parameters at various physiological stages and grain quality indicators of winter wheat with canopy reflectance. . International Journal of Remote Sensing , 25 : 2409 – 2419 .
  • Yoder , B. J. and Pettigrew‐Crosby , R. E. 1995 . Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales. . Remote Sensing of Environment , 53 : 199 – 211 .
  • Zarco‐Tejada , P. J. , Pushnik , J. C. , Dobrowski , S. and Ustin , S. L. 2003 . Steady‐state chlorophyll‐a fluorescence detection from canopy derivative reflectance and double‐peak red‐edge effects. . Remote Sensing of Environment , 84 : 283 – 294 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.