607
Views
59
CrossRef citations to date
0
Altmetric
Original Articles

Estimating above-ground biomass in young forests with airborne laser scanning

Pages 473-501 | Received 29 Apr 2009, Accepted 30 Sep 2009, Published online: 06 Feb 2011

References

  • Baltsavias , E.P. 1999 . Airborne laser scanning: basic relations and formulas . ISPRS Journal of Photogrammetry and Remote Sensing , 54 : 199 – 214 .
  • Bollandsås , O.M. 2007 . Uneven-aged forestry in Norway: inventory and management models , Ph.D. thesis 2007:30, Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, Aas Norway .
  • Boudreau , J. , Nelson , R.F. , Margolis , H.A. , Beaudoin , A. , Guindon , L. and Kimes , D.S. 2008 . Regional aboveground forest biomass using airborne and spaceborne LiDAR in Quebec . Remote Sensing of Environment , 112 : 3876 – 3890 .
  • Braastad , H. 1975 . Yield tables and growth models for Picea abies . Report of the Norwegian Forest Research Institute , 31 : 357 – 540 . [in Norwegian with English summary]
  • Braastad , H. 1980 . Growth model computer program for Pinus sylvestris . Report of the Norwegian Forest Research Institute , 35 : 265 – 360 . [in Norwegian with English summary]
  • Claesson , S. , Sahlén , K. and Lundmark , T. 2001 . Functions for biomass estimation of young Pinus sylvestris, Picea abies and Betula spp. from stands in northern Sweden with high stand densities . Scandinavian Journal of Forest Research , 16 : 138 – 146 .
  • Clark, R.N., Swayze, G.A., Wise, R., Livo, K.E., Hoefen, T.M., Kokaly, R.F. and Sutley, S.J., 2003, USGS Digital Spectral Library splib05a, US Geological Survey, Open File Report 03‐395. http://pubs.usgs.gov/of/2003/ofr-03-395/ofr-03-395.html (http://pubs.usgs.gov/of/2003/ofr-03-395/ofr-03-395.html) (Accessed: 20 April 2009 ).
  • Drake , J.B. , Dubayah , R.O. , Knox , R.G. , Clark , D.B. and Blair , J.B. 2002 . Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest . Remote Sensing of Environment , 81 : 378 – 392 .
  • Drake , J.B. , Knox , R.G. , Dubayah , R.O. , Clark , D.B. , Condit , R. , Blair , J.B. and Hofton , M. 2003 . Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships . Global Ecology and Biogeography , 12 : 147 – 159 .
  • Eid , T. , Gobakken , T. and Næsset , E. 2004 . Comparing stand inventories based on photo interpretation and laser scanning by means of cost-plus-loss analyses . Scandinavian Journal of Forest Research , 19 : 512 – 523 .
  • Flewelling , J.W. and Pienaar , L.V. 1981 . Multiplicative regressions with lognormal errors . Forest Science , 27 : 281 – 289 .
  • Gaveau , D.L.A. and Hill , R.A. 2003 . Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data . Canadian Journal of Remote Sensing , 29 : 650 – 657 .
  • Gobakken , T. and Næsset , E. 2005 . Weibull and percentile models for lidar-based estimation of basal area distribution . Scandinavian Journal of Forest Research , 20 : 490 – 502 .
  • Gobakken , T. and Næsset , E. 2009 . Assessing effects of laser point density, ground sampling intensity, and field sample plot size on biophysical stand properties derived from airborne laser scanner data . Canadian Journal of Forest Research , 38 : 1095 – 1109 .
  • Gregoire , T.G. , Lin , Q.F. , Boudreau , J. and Nelson , R. 2008 . Regression estimation following the square-root transformation of the response . Forest Science , 54 : 597 – 606 .
  • Hodgson , M.E. and Bresnahan , P. 2004 . Accuracy of airborne lidar-derived elevation: Empirical assessment and error budget . Photogrammetric Engineering and Remote Sensing , 70 : 331 – 339 .
  • Holmgren , J. 2004 . Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning . Scandinavian Journal of Forest Research , 19 : 543 – 553 .
  • Kraus , K. and Pfeifer , N. 1998 . Determination of terrain models in wooded areas with airborne laser scanner data . ISPRS Journal of Photogrammetry and Remote Sensing , 53 : 193 – 203 .
  • Lefsky , M.A. , Cohen , W.B. , Harding , D.J. , Parker , G.G. , Acker , S.A. and Gower , S.T. 2002 . Lidar remote sensing of aboveground biomass in three biomes . Global Ecology and Biogeography , 11 : 393 – 400 .
  • Lefsky , M.A. , Harding , D. , Cohen , W.B. , Parker , G. and Shugart , H.H. 1999 . Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA . Remote Sensing of Environment , 67 : 83 – 98 .
  • Lim , K. and Treitz , P. 2004 . Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators . Scandinavian Journal of Forest Research , 19 : 558 – 570 .
  • Lim , K. , Treitz , P. , Wulder , M. , St-Onge , B. and Flood , M. 2003 . LiDAR remote sensing of forest structure . Progress in Physical Geography , 27 : 88 – 106 .
  • Maltamo , M. , Eerikäinen , K. , Packalén , P. and Hyyppä , J. 2006 . Estimation of stem volume using laser scanning-based canopy height metrics . Forestry , 79 : 217 – 229 .
  • Marklund , L.G. 1988 . Biomass Functions for Pine, Spruce and Birch in Sweden , Umeå : Swedish University of Agricultural Sciences, Department of Forest Survey . (in Swedish)
  • Means , J.E. , Acker , S.A. , Harding , D.J. , Blair , J.B. , Lefsky , M.A. , Cohen , W.B. , Harmon , M.E. and McKee , W.A. 1999 . Use of large-footprint scanning airborne lidar to estimate forest stand characteristics in the western cascades of Oregon . Remote Sensing of Environment , 67 : 298 – 308 .
  • Næsset , E. 2001 . Effects of differential single- and dual-frequency GPS and GLONASS observations on point accuracy under forest canopies . Photogrammetric Engineering & Remote Sensing , 67 : 1021 – 1026 .
  • Næsset , E. 2002 . Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data . Remote Sensing of Environment , 80 : 88 – 99 .
  • Næsset , E. 2004a . Practical large-scale forest stand inventory using a small-footprint airborne scanning laser . Scandinavian Journal of Forest Research , 19 : 164 – 179 .
  • Næsset , E. 2004b . Accuracy of forest inventory using airborne laser-scanning: evaluating the first Nordic full-scale operational project . Scandinavian Journal of Forest Research , 19 : 554 – 557 .
  • Næsset , E. Towards a laser-scanner based biomass monitoring system . Forest Inventory and Planning in the Nordic Countries. Proceedings of SNS meeting . 6–8 September 2004 , Sjusjøen, Norway. Edited by: Hobbelstad , K. pp. 117 – 119 . Ås, , Norway : Norwegian Institute of Land Inventory . NIJOS-report 09/05
  • Næsset , E. 2007 . Airborne laser scanning as a method in operational forest inventory: status of accuracy assessments accomplished in Scandinavia . Scandinavian Journal of Forest Research , 22 : 433 – 442 .
  • Næsset , E. 2009 . Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data . Remote Sensing of Environment , 113 : 148 – 159 .
  • Næsset , E. and Bjerknes , K.-O. 2001 . Estimating tree heights and number of stems in young forest stands using airborne laser scanner data . Remote Sensing of Environment , 78 : 328 – 340 .
  • Næsset , E. and Gobakken , T. 2008 . Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser . Remote Sensing of Environment , 112 : 3079 – 3090 .
  • Næsset , E. , Gobakken , T. and Nelson , R. Sampling and mapping forest volume and biomass using airborne LiDARs . Proceedings of the Eight Annual Forest Inventory and Analysis Symposium . 16–19 October 2006 , Monterey, CA. Edited by: McRoberts , R.E , Reams , G.A. , Van Deusen , P.C. and McWilliams , W.H. pp. 297 – 301 . Washington, DC : U.S. Department of Agriculture, Forest Service .
  • Næsset , E. and Jonmeister , T. 2002 . Assessing point accuracy of DGPS under forest canopy before data aquisition, in the field and after postprocessing . Scandinavian Journal of Forest Research , 17 : 351 – 358 .
  • Næsset , E. and Nelson , R. 2007 . Using airborne laser scanning to monitor tree migration in the boreal-alpine transition zone . Remote Sensing of Environment , 110 : 357 – 369 .
  • Nelson , R. , Krabill , W. and Tonelli , J. 1988 . Estimating forest biomass and volume using airborne laser data . Remote Sensing of Environment , 24 : 247 – 267 .
  • Nelson , R. , Oderwald , R. and Gregoire , T.G. 1997 . Separating the ground and airborne laser sampling phases to estimate tropical forest basal area, volume, and biomass . Remote Sensing of Environment , 60 : 311 – 326 .
  • Nelson , R. , Short , A. and Valenti , M. 2004 . Measuring biomass and carbon in Delaware using an airborne profiling lidar . Scandinavian Journal of Forest Research , 19 : 500 – 511 .
  • Nelson , R. , Valenti , M.A. , Short , A. and Keller , C. 2003 . A multiple resource inventory of Delaware using airborne laser data . BioScience , 53 : 981 – 992 .
  • Nilsson , M. 1996 . Estimation of tree heights and stand volume using an airborne lidar system . Remote Sensing of Environment , 56 : 1 – 7 .
  • Parker , R.C. and Evans , D.L. 2004 . An application of LiDAR in a double-sampling forest inventory . Western Journal of Applied Forestry , 19 : 95 – 101 .
  • Patenaude , G. , Hill , R.A. , Milne , R. , Gaveau , D.L.A. , Briggs , B.B.J. and Dawson , T.P. 2004 . Quantifying forest above ground carbon content using LiDAR remote sensing . Remote Sensing of Environment , 93 : 368 – 380 .
  • Peng , M.-H. and Shih , T.-Y. 2006 . Error assessment in two lidar-derived TIN datasets . Photogrammetric Engineering & Remote Sensing , 72 : 933 – 947 .
  • Pinheiro, J., Bates, D., Debroy, S. And Sarkar, D., 2007, Nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-85 http://cran.r-project.org/web/packages/nlme/nlme.pdf (http://cran.r-project.org/web/packages/nlme/nlme.pdf) (Accessed: 1 September 2007 ).
  • Reutebuch , S.E. , McGaughey , R.J. , Andersen , H.E. and Carson , W.W. 2003 . Accuracy of a high-resolution lidar terrain model under a conifer forest canopy . Canadian Journal of Remote Sensing , 29 : 527 – 535 .
  • SAS Institute, Inc . 2004 . SAS/STAT 9.1 User's Guide , Cary, NC : SAS Institute Inc .
  • Shapiro , S.S. and Wilk , M.B. 1965 . An analysis of variance test for normality (complete samples) . Biometrika , 52 : 591 – 611 .
  • Stephens , P.R. , Watt , P.J. , Loubser , D. , Haywood , A. and Kimberly , M.O. 2007 . Estimation of carbon stocks in New Zealand planted forests using airborne scanning LIDAR . International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences , XXXVI : 389 – 394 . Part 3/W52
  • Su , J. and Bork , E. 2006 . Influence of vegetation, slope, and lidar sampling angle on DEM accuracy . Photogrammetric Engineering & Remote Sensing , 72 : 1265 – 1274 .
  • Thomas , V. , Treitz , P. , McCaughey , J.H. and Morrison , I. 2006 . Mapping stand-level forest biophysical variables for a mixedwood boreal forest using lidar: an examination of scanning density . Canadian Journal of Forest Research , 36 : 34 – 47 .
  • Wehr , A. and Lohr , U. 1999 . Airborne laser scanning – an introduction and overview . ISPRS Journal of Photogrammetry and Remote Sensing , 54 : 68 – 82 .
  • Weisberg , S. 1985 . Applied Linear Regression , 2nd , New York, NY : Wiley .
  • White , H. 1980 . A heteroscedasticity-consistent covariance matrix estimator and a direct test for heteroscedasticity . Econometrica , 48 : 817 – 838 .
  • Whittingham , M.J. , Stephens , P.A. , Bradbury , R.B. and Freckleton , R.P. 2006 . Why do we still use stepwise modelling in ecology and behaviour? . Journal of Animal Ecology , 75 : 1182 – 1189 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.