466
Views
22
CrossRef citations to date
0
Altmetric
Articles

Estimation of aboveground vegetation biomass based on Landsat-8 OLI satellite images in the Guanzhong Basin, China

ORCID Icon, , , &
Pages 3927-3947 | Received 23 Nov 2017, Accepted 21 Sep 2018, Published online: 04 Dec 2018

References

  • Adam, E., O. Mutanga, E. M. Abdel-Rahman, and R. Ismail. 2014. “Estimating Standing Biomass in Papyrus (Cyperus Papyrus L.) Swamp: Exploratory of in Situ Hyperspectral Indices and Random Forest Regression.” International Journal of Remote Sensing 35 (2): 693–714. doi:10.1080/01431161.2013.870676.
  • Adam, E., O. Mutanga, and D. Rugege. 2010. “Multispectral and Hypers-Pectral Remote Sensing for Identification and Mapping of Wetland Vegetation: A Review.” Wetlands Ecology and Management 18: 281–296. doi:10.1007/s11273-009-9169-z.
  • Anaya, J. A., E. Chuvieco, and A. Palacios-Orueta. 2009. “Aboveground Biomass Assessment in Colombia: A Remote Sensing Approach.” Forest Ecology and Management 257 (4): 1237–1246. doi:10.1016/j.foreco.2008.11.016.
  • Barrachina, M., J. Cristóbal, and A. F. Tulla. 2015. “Estimating Above-Ground Biomass on Mountain Meadows and Pastures through Remote Sensing.” International Journal of Applied Earth Observation and Geoinformation 38: 184–192. doi:10.1016/j.jag.2014.12.002.
  • Belsley, D. A. 1991. “Conditioning Diagnostics.” Collinearity and Weak Data in Regression. New York: Wiley.
  • Bernardo, N., F. Watanabe, T. Rodrigues, and E. Alcântara. 2017. “Atmospheric Correction Issues for Retrieving Total Suspended Matter Concentrations in Inland Waters Using OLI/Landsat-8 Image.” Advances in Space Research 59: 2335–2348. doi:10.1016/j.asr.2017.02.017.
  • Birth, G. S., and G. R. Mcvey. 1968. “Measuring the Color of Growing Turf with a Reflectance Spectrophotometer.” Agronomy Journal 60: 640–643. doi:10.2134/agronj1968.00021962006000060016x.
  • Carreiras, J. M. B., M. J. Vasconcelos, and R. M. Lucas. 2012. “Understanding the Relationship between Aboveground Biomass and ALOS PALSAR Data in the Forests of Guinea-Bissau (West Africa).” Remote Sensing of Environment 121: 426–442. doi:10.1016/j.rse.2012.02.012.
  • Chave, J., M. Réjou-Méchain, A. Búrquez, E. Chidumayo, M. S. Colgan, W. B. C. Delitti, A. Duque, et al. 2014. “Improved Allometric Models to Estimate the Aboveground Biomass of Tropical Trees.” Global Change Biology 20 (10): 3177–3190. doi:10.1111/gcb.2014.20.issue-10.
  • Chen, J. 1996. “Evaluation of Vegetation Indices and Modified Simple Ratio for Boreal Applications.” Canadian Journal of Remote Sensing 22: 229–242. doi:10.1080/07038992.1996.10855178.
  • Crippen, R. 1990. “Calculating the Vegetation Index Faster.” Remote Sensing of Environment 34: 71–73. doi:10.1016/0034-4257(90)90085-Z.
  • Dube, E., C. Chiduza, and P. Muchaonyerwa. 2012. “Conservation Agriculture Effects on Soil Organic Matter on a Haplic Cambisol after Four Years of Maize-Oat and Maize-Grazing Vetch Rotations in South Africa.” Soil & Tillage Research 123: 21–28. doi:10.1016/j.still.2012.02.008.
  • Dube, T., and O. Mutanga. 2015. “Investigating the Robustness of the New Landsat-8 Operational Land Imager Derived Texture Metrics in Estimating Plantation Forest Aboveground Biomass in Resource Constrained Areas.” ISPRS Journal of Photogrammetry and Remote Sensing 108: 12–32. International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). doi:10.1016/j.isprsjprs.2015.06.002.
  • Dusseux, P., L. Hubert-Moy, T. Corpetti, and F. Vertès. 2015. “Evaluation of SPOT Imagery for the Estimation of Grassland Biomass.” International Journal of Applied Earth Observation and Geoinformation 38: 72–77. doi:10.1016/j.jag.2014.12.003.
  • Eisfelder, C., C. Kuenzer, and S. Dech. 2012. “Derivation of Biomass Information for Semi-Arid Areas Using Remote-Sensing Data.” International Journal of Remote Sensing 33: 2937–2984. doi:10.1080/01431161.2011.620034.
  • Fan, W., H. Zhang, Y. Ying, X. Mao, and J. Yang. 2011. “Comparison of Three Models of Forest Biomass Estimation.” Chinese Journal of Plant Ecology 35 (4): 402–410. doi:10.3724/SP.J.1258.2011.00402.
  • Gara, T. W., A. Murwira, E. Chivhenge, T. Dube, and T. Bangira. 2014. “Estimating Wood Volume from Canopy Area in Deciduous Woodlands of Zimbabwe.” Southern Forests 76 (4): 237–244. doi:10.2989/20702620.2014.965981.
  • Gitelson, A. A., Y. J. Kaufman, and M. N. Merzlyak. 1996. “Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS.” Remote Sensing of Environment 58: 289–298. doi:10.1016/S0034-4257(96)00072-7.
  • Gitelson, A. A., and M. N. Merzlyak. 1998. “Remote Sensing of Chlorophyll Concentration in Higher Plant Leaves.” Advances in Space Research 22: 689–692. doi:10.1016/S0273-1177(97)01133-2.
  • Goel, N. S., and W. Qin. 1994. “Influences of Canopy Architecture on Relationships between Various Vegetation Indices and LAI and Fpar: A Computer Simulation.” Remote Sensing Reviews 10: 309–347. doi:10.1080/02757259409532252.
  • Güneralp, İ., A. M. Filippi, and J. Randall. 2014. “Estimation of Floodplain Aboveground Biomass Using Multispectral Remote Sensing and Nonparametric Modeling.” International Journal of Applied Earth Observation and Geoinformation 33: 119–126. doi:10.1016/j.jag.2014.05.004.
  • Haboudane, D., J. R. Miller, and E. Pattey. 2004. “Hyper Spectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies: Modeling and Validation in the Context of Precision Agriculture.” Remote Sensing of Environment 90: 337–352. doi:10.1016/j.rse.2003.12.013.
  • Homann, P. S., P. Sollins, H. N. Chappell, and A. G. Stangenberger. 1995. “Soil Organic Carbon in a Mountainous, Forested Region: Relation to Site Characteristics.” Soil Science Society of America Journal 59: 1468–1475. doi:10.2136/sssaj1995.03615995005900050037x.
  • Hsu, C.-W., and C.-J. Lin. 2002. “A Comparison Methods for Multi Class Support Vector Machines.” IEEE Transactions on Neural Networks 13: 415–425. doi:10.1109/72.991427.
  • Huete, A. 1988. “A Soil-Adjusted Vegetation Index (SAVI).” Remote Sensing of Environment 25: 295–309. doi:10.1016/0034-4257(88)90106-X.
  • Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira. 2002. “Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices.” Remote Sensing of Environment 83: 195–213. doi:10.1016/S0034-4257(02)00096-2.
  • Jin, X., G. Yang, X. Xu, H. Yang, H. Feng, Z. Li, J. Shen, Y. Lan, and C. Zhao. 2015. “Combined Multi-Temporal Optical and Radar Parameters for Estimating LAI and Biomass in Winter Wheat Using HJ and RADARSAR-2 Data.” Remote Sensing 7 (10): 13251–13272. doi:10.3390/rs71013251.
  • Jin, Y., X. Yang, J. Qiu, J. Li, T. Gao, Q. Wu, F. Zhao, H. Ma, H. Yu, and B. Xu. 2014. “Remote Sensing-Based Biomass Estimation and Its Spatio-Temporal Variations in Temperate Grassland, Northern China.” Remote Sensing 6 (2): 1496–1513. doi:10.3390/rs6021496.
  • Jr, E. R. H., and B. N. Rock. 1989. “Detection of Changes in Leaf Water Content Using Near- and Middle-Infrared Reflectances.” Remote Sensing of Environment 30: 43–54. doi:10.1016/0034-4257(89)90046-1.
  • Kaufman, Y. J., and D. Tanré. 1992. “Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS.” IEEE Transactions on Geoscience and Remote Sensing 30: 261–270. doi:10.1109/36.134076.
  • Kelsey, K. C., and J. C. Neff. 2014. “Estimates of Aboveground Biomass from Texture Analysis of Landsat Imagery.” Remote Sensing 6 (7): 6407–6422. doi:10.3390/rs6076407.
  • Kogan, F. 1995. “Application of Vegetation Index and Brightness Temperature for Drought Detection.” Advances in Space Research 15: 91–100. doi:10.1016/0273-1177(95)00079-T.
  • Lu, D. 2006. “The Potential and Challenge of Remote Sensing-Based Biomass Estimation.” International Journal of Remote Sensing 27: 1297–1328. doi:10.1080/01431160500486732.
  • Lu, D., Chen, Q., Wang, G., Liu, L., Li, G., & Moran, E. 2014. “A Survey of Remote Sensing-Based Aboveground Biomass Estimation Methods in Forest Ecosystems.” International Journal of Digital Earth (December) 9 (1): 63–105. doi:10.1080/17538947.2014.990526.
  • Lu, D., P. Mausel, E. Brondizio, and E. Moran. 2004. “Relationships between Forest Stand Parameters and Landsat TM Spectral Responses in the Brazilian Amazon Basin.” Forest Ecology and Management 198: 149–167. doi:10.1016/j.foreco.2004.03.048.
  • Lymburner, L., P. J. Beggs, and C. R. Jacobson. 2000. “Estimation of Canopy-Average Surface-Specific Leaf Area Using Landsat TM Data.” Photogrammetric Engineering & Remote Sensing 66: 183–191.
  • Michael, G., A. Fethi, and J. A. van Aardt. 2008. “Estimating Plot-Level Forest Structural Attributes Using High Spectral Resolution ASTER Satellite Data in Even-Aged Eucalyptus Plantations in Southern KwaZulu-Natal, South Africa.” Southern Forests A Journal of Forest Science 70: 227–236. doi:10.2989/SF.2008.70.3.6.667.
  • Nemani, R., L. Pierce, and S. Running. 1993. “Forest Ecosystem Processes at the Watershed Scale: Sensitivity to Remotely-Sensed Leaf Area Index Estimates.” International Journal of Remote Sensing 14: 2519–2534. doi:10.1080/01431169308904290.
  • Perry, C. R., and L. F. Lautenschlager. 1984. “Functional Equivalence of Spectral Vegetation Indices.” Remote Sensing of Environment 14: 169–182. doi:10.1016/0034-4257(84)90013-0.
  • Popescu, S. C., K. Zhao, A. Neuenschwander, and C. Lin. 2011. “Satellite Lidar Vs. Small Footprint Airborne Lidar: Comparing the Accuracy of Aboveground Biomass Estimates and Forest Structure Metrics at Footprint Level.” Remote Sensing of Environment 115: 2786–2797. doi:10.1016/j.rse.2011.01.026.
  • Qi, C., W. Wang, and S. Wang 2015. “Application of Indoor Temperature Prediction Based on SVM and BPNN.”The 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, 2015, 2883–2887 IEEE..
  • Qi, J., A. Chehbouni, A. R. Huete, Y. H. Kerr, and S. Sorooshian. 1994. “A Modified Soil-Adjustedvegetation Index.” Remote Sensing of Environment 48: 119–126. doi:10.1016/0034-4257(94)90134-1.
  • Richardson, A. J. 1977. “Distinguishing Vegetation from Soil Background Information.” Photogrammetric Engineering and Remote Sensing 43: 1541–1552.
  • Rondeaux, G., M. Steven, and F. Baret. 1996. “Optimization of Soil-Adjusted Vegetation Indices.” Remote Sensing of Environment 55: 95–107. doi:10.1016/0034-4257(95)00186-7.
  • Roujean, J., and F. Breon. 1995. “Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements.” Remote Sensing of Environment 51: 375–384. doi:10.1016/0034-4257(94)00114-3.
  • Rouse, J. W. J., R. H. Haas, J. A. Schell, and D. W. Deering. 1973. “Monitoring Vegetation Systems in the Great Plains with Erts.” Nasa Special Publication 351: 309–317.
  • Sarker, L. R., and J. E. Nichol. 2011. “Improved Forest Biomass Estimates Using ALOS AVNIR-2 Texture Indices.” Remote Sensing of Environment 115 (4): 968–977. doi:10.1016/j.rse.2010.11.010.
  • Soenen, S. A., D. R. Peddle, R. J. Hall, C. A. Coburn, and F. G. Hall. 2010. “Estimating Aboveground Forest Biomass from Canopy Reflectance Model Inversion in Mountainous Terrain.” Remote Sensing of Environment 114: 1325–1337. doi:10.1016/j.rse.2009.12.012.
  • Sripada, R., R. W. Heiniger, J. G. White, and A. D. Meijer. 2006. “Aerial Color Infrared Photography for Determining Early In-Season Nitrogen Requirements in Corn.” Agronomy Journal 98: 968–977. doi:10.2134/agronj2005.0200.
  • Steininger, M. K. 2000. “Satellite Estimation of Tropical Secondary Forest Above-Ground Biomass: Data from Brazil and Bolivia.” International Journal of Remote Sensing 21: 1139–1157. doi:10.1080/014311600210119.
  • Su, Y., Q. Guo, B. Xue, T. Hu, O. Alvarez, S. Tao, and J. Fang. 2016. “Spatial Distribution of Forest Aboveground Biomass in China: Estimation through Combination of Spaceborne Lidar, Optical Imagery, and Forest Inventory Data.” Remote Sensing of Environment 173: 187–199. doi:10.1016/j.rse.2015.12.002.
  • Sun, J., Shi, S., Gong, W. Yang, J., Du, L., Song, S., Chen, B. and Zhang, Z. 2017. “Evaluation of Hyperspectral LiDAR for Monitoring Rice Leaf Nitrogen by Comparison with Multispectral LiDAR and Passive Spectrometer.” Nature Publishing Group, no. December 2016. Nature Publishing Group: 1–9.
  • Tsui, O. W., N. C. Coops, M. A. Wulder, P. L. Marshall, and A. McCardle. 2012. “Using Multi- Frequency Radar and Discrete-Return LiDAR Measurements to Estimate Above- Ground Biomass and Biomass Components in a Coastal Temperate Forest.” ISPRS Journal of Photogrammetry and Remote Sensing 69: 121–133. doi:10.1016/j.isprsjprs.2012.02.009.
  • Tucker, C. 1979. “Red and Photographic Infrared Linear Combinations for Monitoring Vegetation.” Remote Sensing of Environment 8: 127–150. doi:10.1016/0034-4257(79)90013-0.
  • Xie, M., Y. Wang, Q. Chang, M. Fu, and M. Ye. 2013. “Assessment of Landscape Patterns Affecting Land Surface Temperature in Different Biophysical Gradients in Shenzhen,China.” Urban Ecosystems 16: 871–886. doi:10.1007/s11252-013-0325-0.
  • Xu, X. 2011. “Spectral Mixture Analysis Based on Erf-BP Model and Applied in Extracting Forest Information.” Scientia Silvae Sinicae 47: 30–38.
  • Xu, X., Du, H., Zhou, G., Ge, H., Shi, Y., Zhou, Y., Fan, W. and Fan, W. 2011. “Estimation of Aboveground Carbon Stock of Moso Bamboo (Phyllostachys Heterocycla Var. Pubescens) Forest with a Landsat Thematic Mapper Image.” International Journal of Remote Sensing 32 (5): 1431–1448. doi: 10.1080/01431160903551389.
  • Yang, C., H. Huang, and S. Wang. 2011. “Estimation of Tropical Forest Biomass Using Landsat TM Imagery and Permanent Plot Data in Xishuangbanna, China.” International Journal of Remote Sensing 32 (20): 5741–5756. doi:10.1080/01431161.2010.507677.
  • Zavalas, R., D. Ierodiaconou, D. Ryan, A. Rattray, and J. Monk. 2014. “Habitat Classification of Temperate Marine Macroalgal Communities Using Bathymetric LiDAR.” Remote Sensing 6 (3): 2154–2175. doi:10.3390/rs6032154.
  • Zhang, Y., S. Liang, and G. Sun. 2014. “Forest Biomass Mapping of Northeastern China Using GLAS and MODIS Data.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7 (1): 140–152. doi:10.1109/JSTARS.2013.2256883.
  • Zhao, F., B. Xu, X. Yang, Y. Jin, J. Li, L. Xia, S. Chen, and H. Ma. 2014. “Remote Sensing Estimates of Grassland Aboveground Biomass Based on MODIS Net Primary Productivity (NPP): A Case Study in the Xilingol Grassland of Northern China.” Remote Sensing 6 (6): 5368–5386. doi:10.3390/rs6065368.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.