933
Views
9
CrossRef citations to date
0
Altmetric
Research Article

The relationship between solar-induced fluorescence and gross primary productivity under different growth conditions: global analysis using satellite and biogeochemical model data

, &
Pages 7660-7679 | Received 23 Sep 2019, Accepted 03 Apr 2020, Published online: 22 Jul 2020

References

  • Anav, A., P. Friedlingstein, C. Beer, P. Ciais, A. Harper, C. Jones, G. Murray‐Tortarolo, D. Papale, N. C. Parazoo, and P. Peylin. 2015. “Spatiotemporal Patterns of Terrestrial Gross Primary Production: A Review.” Reviews of Geophysics 53 (3): 785–818. doi:10.1002/2015RG000483.
  • Baker, and R. Neil. 2008. “Chlorophyll Fluorescence: A Probe of Photosynthesis in Vivo.” Annual Review of Plant Biology 59 (1): 89. doi:10.1146/annurev.arplant.59.032607.092759.
  • Baldocchi, D. D. 2003. “Assessing the Eddy Covariance Technique for Evaluating Carbon Dioxide Exchange Rates of Ecosystems: Past, Present and Future.” Global Change Biology 9 (4): 479–492. doi:10.1046/j.1365-2486.2003.00629.x.
  • Beer, C., M. Reichstein, E. Tomelleri, P. Ciais, M. Jung, N. Carvalhais, C. Rödenbeck, M. A. Arain, D. Baldocchi, and G. B. Bonan. 2010. “Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate.” science 329 (5993): 834–838. doi:10.1126/science.1184984.
  • Berry, J. O. S. E. P. H. A., and W. J. O. H. N. S. Downton. 1982. “Environmental Regulation of Photosynthesis.” Photosynthesis 2: 263–343.
  • Cohen, W. B., T. K. Maiersperger, Z. Yang, S. T. Gower, D. P. Turner, W. D. Ritts, M. Berterretche, and S. W. Running. 2003. “Comparisons of Land Cover and LAI Estimates Derived from ETM+ and MODIS for Four Sites in North America: A Quality Assessment of 2000/2001 Provisional MODIS Products.” Remote Sensing of Environment 88 (3): 233–255. doi:10.1016/j.rse.2003.06.006.
  • Cui, T., S. Rui, and Q. Chen. 2016. “Assessing the Factors Determining the Relationship between Solar-induced Chlorophyll Fluorescence and GPP.” 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, 2016, pp. 3520-3523. doi: 10.1109/IGARSS.2016.7729910.
  • Damm, A., L. Guanter, E. Paul-Limoges, C. van der Tol, A. Hueni, N. Buchmann, W. Eugster, C. Ammann, and M. E. Schaepman. 2015. “Far-red Sun-induced Chlorophyll Fluorescence Shows Ecosystem-specific Relationships to Gross Primary Production: An Assessment Based on Observational and Modeling Approaches.” Remote Sensing of Environment 166: 91–105. doi:10.1016/j.rse.2015.06.004.
  • Dobrowski, S. Z., J. C. Pushnik, P. J. Zarco-Tejada, and S. L. Ustin. 2005. “Simple Reflectance Indices Track Heat and Water Stress-induced Changes in Steady-state Chlorophyll Fluorescence at the Canopy Scale.” Remote Sensing of Environment 97 (3): 403–414. doi:10.1016/j.rse.2005.05.006.
  • Duveiller, G., and A. Cescatti. 2016. “Spatially Downscaling Sun-induced Chlorophyll Fluorescence Leads to an Improved Temporal Correlation with Gross Primary Productivity.” Remote Sensing of Environment 182: 72–89. doi:10.1016/j.rse.2016.04.027.
  • FIELD, C. B. 1995. “Global Net Primary Production: Combining Ecology and Remote Sensing.” Remote Sensing of Environment 51 (1): 74–88. doi:10.1016/0034-4257(94)00066-V.
  • Frankenberg, C., C. O’Dell, J. Berry, L. Guanter, J. Joiner, P. Köhler, R. Pollock, and T. E. Taylor. 2014. “Prospects for Chlorophyll Fluorescence Remote Sensing from the Orbiting Carbon Observatory-2.” Remote Sensing of Environment 147 (18): 1–12. doi:10.1016/j.rse.2014.02.007.
  • Gamon, J. A., J. Penuelas, and C. B. Field. 1992. “A Narrow-waveband Spectral Index that Tracks Diurnal Changes in Photosynthetic Efficiency.” Remote Sensing of Environment 41 (1): 35–44. doi:10.1016/0034-4257(92)90059-S.
  • Goetz S., J., and S. D. PRINCE. 1999. “Modelling Terrestrial Carbon Exchange and Storage: Evidence and Implications of Functional Convergence in Light-use Efficiency.” Advances in Ecological Research 28: 57–92.
  • Goulden, M. L., J. William Munger, S. M. Fan, B. C. Daube, and S. C. Wofsy. 2010. “Measurements of Carbon Sequestration by Long-Term Eddy Covariance: Methods and a Critical Evaluation of Accuracy.” Global Change Biology 2 (3): 169–182. doi:10.1111/j.1365-2486.1996.tb00070.x.
  • Guan, K., J. A. Berry, Y. Zhang, J. Joiner, L. Guanter, G. Badgley, and D. B. Lobell. 2016. “Improving the Monitoring of Crop Productivity Using Spaceborne Solar-induced Fluorescence.” Global Change Biology 22 (2): 716–726. doi:10.1111/gcb.13136.
  • Guanter, L., C. Frankenberg, A. Anu Dudhia, P. E. Lewis, J. Gómez-Dans, A. Kuze, H. Suto, and R. G. Grainger. 2012. “Retrieval and Global Assessment of Terrestrial Chlorophyll Fluorescence from GOSAT Space Measurements.” Remote Sensing of Environment 121 (6): 236–251. doi:10.1016/j.rse.2012.02.006.
  • Guanter, L., Y. Zhang, M. Jung, J. Joiner, and M. Voigt. 2014. “Global and Time-resolved Monitoring of Crop Photosynthesis with Chlorophyll Fluorescence.” Proceedings of the National Academy of Sciences of the United States of America 111 (14): 1327–1333. doi:10.1073/pnas.1320008111.
  • Hayek, M. N., R. Wehr, M. Longo, L. R. Hutyra, K. Wiedemann, J. William Munger, D. Bonal, S. R. Saleska, D. R. Fitzjarrald, and S. C. Wofsy. 2018. “A Novel Correction for Biases in Forest Eddy Covariance Carbon Balance.” Agricultural and Forest Meteorology 250: 90–101. doi:10.1016/j.agrformet.2017.12.186.
  • Janzen, H. H. 2004. “Carbon Cycling in Earth Systems - A Soil Science Perspective.” Agriculture Ecosystems & Environment 104 (3): 399–417. doi:10.1016/j.agee.2004.01.040.
  • Joiner, J., L. Guanter, R. Lindstrot, M. Voigt, A. P. Vasilkov, E. M. Middleton, K. F. Huemmrich, Y. Yoshida, and C. Frankenberg. 2013. “Global Monitoring of Terrestrial Chlorophyll Fluorescence from Moderate-spectral-resolution Near-infrared Satellite Measurements: Methodology, Simulations, and Application to GOME-2.” Atmospheric Measurement Techniques 6 (10): 2803–2823. doi:10.5194/amt-6-2803-2013.
  • Joiner, J., Y. Yoshida, A. P. Vasilkov, K. Schaefer, M. Jung, L. Guanter, Y. Zhang, S. Garrity, E. M. Middleton, and K. F. Huemmrich. 2014. “The Seasonal Cycle of Satellite Chlorophyll Fluorescence Observations and Its Relationship to Vegetation Phenology and Ecosystem Atmosphere Carbon Exchange.” Remote Sensing of Environment 152: 375–391. doi:10.1016/j.rse.2014.06.022.
  • Joiner, J., Y. Yoshida, A. P. Vasilkov, Y. Yoshida, and L. A. Corp. 2011. “First Observations of Global and Seasonal Terrestrial Chlorophyll Fluorescence from Space.” Biogeosciences 8 (3): 637–651. doi:10.5194/bg-8-637-2011.
  • Jung, M., H. A. Markus Reichstein, A. C. Margolis, and C. A. Williams. 2011. “Global Patterns Of Land-atmosphere Fluxes Of Carbon Dioxide, Latent Heat, and Sensible Heat Derived from Eddy Covariance, Satellite, and Meteorological Observations.” Journal of Geophysical Research Atmospheres 116. Journal of Geophysical Research 116: 3. doi:10.1029/2010jg001566
  • Koffi, E. N., P. J. Rayner, A. J. Norton, C. Frankenberg, and M. Scholze. 2015. “Investigating the Usefulness of Satellite-derived Fluorescence Data in Inferring Gross Primary Productivity within the Carbon Cycle Data Assimilation System.” Biogeosciences 12 (13): 707–749. doi:10.5194/bgd-12-707-2015.
  • Köhler, P., L. Guanter, H. Kobayashi, S. Walther, and Y. Wei. 2017. “Assessing the Potential of Sun-induced Fluorescence and the Canopy Scattering Coefficient to Track Large-scale Vegetation Dynamics in Amazon Forests.” Remote Sensing of Environment 204: 769-785. doi:10.1016/j.rse.2017.09.025
  • Krause, G. H., and E. Weis. 1991. “Chlorophyll Fluorescence and Photosynthesis: The Basics.” Annual Review of Plant Physiology 42 (42): 313–349. doi:10.1146/annurev.pp.42.060191.001525.
  • Kropp, H., M. Loranty, H. D. Alexander, L. T. Berner, S. M. Natali, and S. A. Spawn. 2017. “Environmental Constraints on Transpiration and Stomatal Conductance in a Siberian Arctic Boreal Forest.” Journal of Geophysical Research Biogeosciences 122 (3): 487–497. doi:10.1002/2016JG003709.
  • Lee, J.-E., J. A. Berry, C. van der Tol, X. Yang, L. Guanter, A. Damm, I. Baker, and C. Frankenberg. 2015. “Simulations of Chlorophyll Fluorescence Incorporated into the Community Land Model Version 4.” Global Change Biology 21 (9): 3469–3477. doi:10.1111/gcb.12948.
  • Li, X., and J. Xiao. 2019. “A Global, 0.05-degree Product of Solar-induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data.” Remote Sensing 11 (5): 517. doi:10.3390/rs11050517.
  • Li, X., J. Xiao, and H. Binbin. 2018a. “Chlorophyll Fluorescence Observed by Oco-2 Is Strongly Related to Gross Primary Productivity Estimated from Flux Towers in Temperate Forests.” Remote Sensing Of Environment 204: 659-671. doi: 10.1016/j.rse.2017.09.034.
  • Li, X., J. Xiao, H. Binbin, M. Altaf Arain, J. Beringer, A. R. Desai, D. Y. Carmen Emmel, A. K. Hollinger, and I. Mammarella. 2018b. “Solar-induced Chlorophyll Fluorescence Is Strongly Correlated with Terrestrial Photosynthesis for a Wide Variety of Biomes: First Global Analysis Based on OCO-2 and Flux Tower Observations.” Global Change Biology 24 (9): 3990–4008. doi:10.1111/gcb.14297.
  • Liu, L., Y. Zhang, Q. Jiao, and D. Peng. 2013. “Assessing Photosynthetic Light-use Efficiency Using a Solar-induced Chlorophyll Fluorescence and Photochemical Reflectance Index.” International Journal of Remote Sensing 34 (12): 4264–4280. doi:10.1080/01431161.2013.775533.
  • Liu, L., and Z. Cheng. 2010. “Detection of Vegetation Light-Use Efficiency Based on Solar-Induced Chlorophyll Fluorescence Separated from Canopy Radiance Spectrum.” IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing 3 (3): 306–312. doi:10.1109/JSTARS.2010.2048200.
  • Logan, B. A. 2007. “Chlorophyll A Fluorescence: A Signature of Photosynthesis.” Journal of the Torrey Botanical Society 132 (4): 650. doi:10.3159/1095-5674(2005)132[650a:BR]2.0.CO;2.
  • Lu, X., X. Cheng, L. Xianglan, and J. Tang. 2017. “Opportunities and Challenges of Applications of Satellite-derived Sun-induced Fluorescence at Relatively High Spatial Resolution.” Science of the Total Environment 619–620: 649–653. doi:10.1016/j.scitotenv.2017.11.158.
  • Madani, N., J. Kimball, L. Jones, N. Parazoo, and K. Guan. 2017. “Global Analysis of Bioclimatic Controls on Ecosystem Productivity Using Satellite Observations of Solar-induced Chlorophyll Fluorescence.” Remote Sensing 9 (6): 530. doi:10.3390/rs9060530.
  • Maxwell, K., and G. N. Johnson. 2000. “Chlorophyll Fluorescence—a Practical Guide.” Journal of Experimental Botany 51 (345): 659–668. doi:10.1093/jexbot/51.345.659.
  • Meroni, M., M. Rossini, L. Guanter, L. Alonso, U. Rascher, R. Colombo, and J. Moreno. 2009. “Remote Sensing of Solar-induced Chlorophyll Fluorescence: Review of Methods and Applications.” Remote Sensing of Environment 113 (10): 2037–2051. doi:10.1016/j.rse.2009.05.003.
  • Monteith, J. L. 1972. “Solar Radiation and Productivity in Tropical Ecosystems.” J.appl.ecol 9 (3): 747–766. doi:10.2307/2401901.
  • Murray, F. W. 1966. “On the Computation of Saturation Vapor Pressure.” J.appl.meteorol 6 (1): 203–204. doi:10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2.
  • Ozanne, and M. P. Claire.. 2003. “Biodiversity Meets the Atmosphere: A Global View of Forest Canopies.” science 301 (5630): 183–186. doi:10.1126/science.1084507.
  • Parazoo, N. C., K. Bowman, J. B. Fisher, C. Frankenberg, D. B. A. Jones, A. Cescatti, Ó. Pérez-Priego, G. Wohlfahrt, and L. Montagnani. 2015. “Terrestrial Gross Primary Production Inferred from Satellite Fluorescence and Vegetation Models.” Global Change Biology 20 (10): 3103–3121. doi:10.1111/gcb.12652.
  • Porcar-Castell, A., E. Tyystjärvi, J. Atherton, C. Van der Tol, J. Flexas, E. E. Pfündel, J. Moreno, C. Frankenberg, and J. A. Berry. 2014. “Linking Chlorophyll a Fluorescence to Photosynthesis for Remote Sensing Applications: Mechanisms and Challenges.” Journal of Experimental Botany 65 (15): 4065–4095. doi:10.1093/jxb/eru191.
  • Raczka, B., M. C. Dietze, S. P. Serbin, and K. J. Davis. 2018. “What Limits Predictive Certainty of Long‐Term Carbon Uptake?” Journal of Geophysical Research: Biogeosciences 123 (12): 3570–3588.
  • Rascher, U., L. Alonso, A. Burkart, C. Cilia, S. Cogliati, R. Colombo, A. Damm, M. Drusch, L. Guanter, and J. Hanuš. 2016. “Sun‐induced Fluorescence – A New Probe of Photosynthesis: First Maps from the Imaging Spectrometer HyPlant.” Global Change Biology 21 (12): 4673–4684. doi:10.1111/gcb.13017.
  • Shan, N., J. Weimin, M. Migliavacca, D. Martini, L. Guanter, J. Chen, Y. Goulas, and Y. Zhang. 2019. “Modeling Canopy Conductance and Transpiration from Solar-induced Chlorophyll Fluorescence.” Agricultural and Forest Meteorology 268: 189–201. doi:10.1016/j.agrformet.2019.01.031.
  • Sun, Y., C. Frankenberg, M. Jung, J. Joiner, L. Guanter, P. K?hler, and T. Magney. 2018. “Overview of Solar-Induced Chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-2: Retrieval, Cross-mission Comparison, and Global Monitoring for GPP.” Remote Sensing of Environment 209: 808–823. doi:10.1016/j.rse.2018.02.016.
  • Tang, H., and R. Dubayah. 2017. “Light-driven Growth in Amazon Evergreen Forests Explained by Seasonal Variations of Vertical Canopy Structure.” Proceedings of the National Academy of Sciences 114 (10): 2640–2644. doi:10.1073/pnas.1616943114.
  • Turner, D. P., W. D. Ritts, W. B. Cohen, S. T. Gower, M. Zhao, S. W. Running, S. C. Wofsy, S. Urbanski, A. L. Dunn, and J. W. Munger. 2003. “Scaling Gross Primary Production (GPP) over Boreal and Deciduous Forest Landscapes in Support of MODIS GPP Product Validation.” Remote Sensing of Environment 88 (3): 256–270. doi:10.1016/j.rse.2003.06.005.
  • Van der Tol, C., J. A. Berry, P. K. E. Campbell, and U. Rascher. 2014. “Models of Fluorescence and Photosynthesis for Interpreting Measurements of Solar‐induced Chlorophyll Fluorescence.” Journal of Geophysical Research: Biogeosciences 119 (12): 2312–2327. doi:10.1002/2014JG002713.
  • Verrelst, J., J. P. Rivera, C. van der Tol, F. Magnani, G. Mohammed, and J. Moreno. 2015. “Global Sensitivity Analysis of the SCOPE Model: What Drives Simulated Canopy-leaving Sun-induced Fluorescence?” Remote Sensing of Environment 166: 8–21. doi:10.1016/j.rse.2015.06.002.
  • Wen, J., P. Köhler, G. Duveiller, N. C. Parazoo, T. S. Magney, G. Hooker, L. Yu, C. Y. Chang, and Y. Sun. 2020. “A Framework for Harmonizing Multiple Satellite Instruments to Generate A Long-term Global High Spatial-resolution Solar-induced Chlorophyll Fluorescence (SIF).” Remote Sensing of Environment 239: 111644. doi:10.1016/j.rse.2020.111644.
  • Xiao, Z., S. Liang, J. Wang, P. Chen, X. Yin, L. Zhang, and J. Song. 2013. “Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product from Time-series MODIS Surface Reflectance.” IEEE Transactions on Geoscience and Remote Sensing 52 (1): 209–223. doi:10.1109/TGRS.2013.2237780.
  • Xiao, Z., S. Liang, J. Wang, Y. Xiang, X. Zhao, and J. Song. 2016. “Long-time-series Global Land Surface Satellite Leaf Area Index Product Derived from Modis and Avhrr Surface Reflectance.” Ieee Transactions on Geoscience and Remote Sensing 54 (9): 5301-5318. doi: 10.1109/TGRS.2016.2560522.
  • Zarco-Tejada, P. J., A. Morales, L. Testi, and F. J. Villalobos. 2013. “Spatio-temporal Patterns of Chlorophyll Fluorescence and Physiological and Structural Indices Acquired from Hyperspectral Imagery as Compared with Carbon Fluxes Measured with Eddy Covariance.” Remote Sensing of Environment 133 (12): 102–115. doi:10.1016/j.rse.2013.02.003.
  • Zhang, Y., J. Joiner, S. H. Alemohammad, S. Zhou, and P. Gentine. 2018. “A Global Spatially Contiguous Solar-induced Fluorescence (CSIF) Dataset Using Neural Networks.” Biogeosciences 15 (19): 5779–5800. doi:10.5194/bg-15-5779-2018.
  • Zhang, Y., J. A. Luis Guanter, J. J. Berry, C. van der Tol, A. Huete, A. Gitelson, M. Voigt, and P. K?hler. 2015. “Estimation of Vegetation Photosynthetic Capacity from Space-based Measurements of Chlorophyll Fluorescence for Terrestrial Biosphere Models.” Global Change Biology 20 (12): 3727–3742. doi:10.1111/gcb.12664.
  • Zhang, Y., X. Xiao, C. Jin, J. Dong, S. Zhou, P. Wagle, J. Joiner, L. Guanter, Y. Zhang, and G. Zhang. 2016. “Consistency between Sun-induced Chlorophyll Fluorescence and Gross Primary Production of Vegetation in North America.” Remote Sensing of Environment 183: 154–169. doi:10.1016/j.rse.2016.05.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.