3,663
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Fusion of airborne hyperspectral and LiDAR canopy-height data for estimating fractional cover of tall woody plants, herbaceous vegetation, and other soil cover types in a semi-arid savanna ecosystem

ORCID Icon, &
Pages 3890-3926 | Received 05 May 2022, Accepted 19 Jul 2022, Published online: 10 Aug 2022

References

  • Ahlstrom, A., M. R. Raupach, G. Schurgers, B. Smith, A. Arneth, M. Jung, M. Reichstein, et al. 2015. ”The Dominant Role of Semi-Arid Ecosystems in the Trend and Variability of the Land CO2 Sink.” Science. doi:10.1126/science.aaa1668.
  • Alonzo, M., J. P. McFadden, D. J. Nowak, and D. A. Roberts. 2016. “Mapping Urban Forest Structure and Function Using Hyperspectral Imagery and Lidar Data.” Urban Forestry & Urban Greening 17: 135–147. doi:10.1016/j.ufug.2016.04.003.
  • Archer, S. R., E. M. Andersen, K. I. Predick, S. Schwinning, R. J. Steidl, and S. R. Woods. 2017. “Woody Plant Encroachment: Causes and Consequences.” Rangeland Systems. doi:10.1007/978-3-319-46709-2_2.
  • Asner, G. P. and D. B. Lobell. 2000. “A Biogeophysical Approach for Automated SWIR Unmixing of Soils and Vegetation.” Remote Sensing of Environment 74: 99–112. doi:10.1016/s0034-4257(00)00126-7.
  • Asner, G. P. and K. B. Heidebrecht. 2002. “Spectral Unmixing of Vegetation, Soil and Dry Carbon Cover in Arid Regions: Comparing Multispectral and Hyperspectral Observations.” International Journal of Remote Sensing 23: 3939–3958. doi:10.1080/01431160110115960.
  • Asner, G. P., D. E. Knapp, T. Kennedy-Bowdoin, M. O. Jones, R. E. Martin, J. Boardman, and R. F. Hughes. 2008. “Invasive Species Detection in Hawaiian Rainforests Using Airborne Imaging Spectroscopy and LiDar.” Remote Sensing of Environment. doi:10.1016/j.rse.2007.11.016.
  • Asner, G. P., S. R. Levick, and I. P. J. Smit. 2011. “Remote Sensing of Fractional Cover and Biochemistry in Savannas.” In Ecosystem Function in Savannas: Measurement and Modeling at Landscape to Global Scales, edited by M. J. Hill and N. P. Hanan. Boca Raton, FL: CRC Press. doi:10.1201/b10275.
  • Barger, N. N., S. R. Archer, J. L. Campbell, C.-Y. Huang, J. A. Morton, and A. K. Knapp. 2011. “Woody Plant Proliferation in North American Drylands: A Synthesis of Impacts on Ecosystem Carbon Balance.” Journal of Geophysical Research 116. doi:10.1029/2010jg001506.
  • Belgiu, M. and L. Drăguţ. 2016. “Random Forest in Remote Sensing: A Review of Applications and Future Directions.” ISPRS Journal of Photogrammetry and Remote Sensing 114: 24–31.
  • Belnap, J., B. Weber, and B. Büdel. 2016. “Biological Soil Crusts as an Organizing Principle in Drylands.” Biological Soil Crusts: An Organizing Principle in Drylands. doi:10.1007/978-3-319-30214-0_1.
  • Biederman, J. A., R. L. Scott, T. W. Bell, D. R. Bowling, S. Dore, J. Garatuza-Payan, T. E. Kolb, et al. 2017. ”CO Exchange and Evapotranspiration Across Dryland Ecosystems of Southwestern North America.” Global Change Biology 23 (10): 4204–4221.
  • Brandt, M., P. Hiernaux, T. Tagesson, A. Verger, K. Rasmussen, A. Aziz Diouf, C. Mbow, E. Mougin, and R. Fensholt. 2016. “Woody Plant Cover Estimation in Drylands from Earth Observation Based Seasonal Metrics.” Remote Sensing of Environment 172: 28–38. doi:10.1016/j.rse.2015.10.036.
  • Brandt, M., C. J. Tucker, A. Kariryaa, K. Rasmussen, C. Abel, J. Small, J. Chave, et al. 2020. ”An Unexpectedly Large Count of Trees in the West African Sahara and Sahel.” Nature 587 (7832): 78–82. doi:10.1038/s41586-020-2824-5.
  • Clark, M. L., D. A. Roberts, J. J. Ewel, and D. B. Clark. 2011. “Estimation of Tropical Rain Forest Aboveground Biomass with Small-Footprint Lidar and Hyperspectral Sensors.” Remote Sensing of Environment 115: 2931–2942. doi:10.1016/j.rse.2010.08.029.
  • Colditz, R. 2015. “An Evaluation of Different Training Sample Allocation Schemes for Discrete and Continuous Land Cover Classification Using Decision Tree-Based Algorithms.” Remote Sensing 7: 9655–9681. doi:10.3390/rs70809655.
  • Colgan, M., C. Baldeck, J.-B. Féret, and G. Asner. 2012. “Mapping Savanna Tree Species at Ecosystem Scales Using Support Vector Machine Classification and BRDF Correction on Airborne Hyperspectral and LiDar Data.” Remote Sensing 4: 3462–3480. doi:10.3390/rs4113462.
  • Congalton, R. G. and K. Green. 2019. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. 3rd ed. Boca Raton: CRC Press.
  • Dashti, H., N. F. Glenn, S. Ustin, J. J. Mitchell, Y. Qi, N. T. Ilangakoon, A. N. Flores, et al. 2019. “Empirical Methods for Remote Sensing of Nitrogen in Drylands May Lead to Unreliable Interpretation of Ecosystem Function.” IEEE Transactions on Geoscience and Remote Sensing. doi:10.1109/tgrs.2018.2889318.
  • Dashti, H., A. Poley, N. F. Glenn, N. Ilangakoon, L. Spaete, D. Roberts, J. Enterkine, A. N. Flores, S. L. Ustin, and J. J. Mitchell. 2019. “Regional Scale Dryland Vegetation Classification with an Integrated Lidar-Hyperspectral Approach.” Remote Sensing. doi:10.3390/rs11182141.
  • Dettweiler-Robinson, E., M. Nuanez, and M. E. Litvak. 2018. ”Biocrust Contribution to Ecosystem Carbon Fluxes Varies Along an Elevational Gradient.” Ecosphere 9 (6): e02315. Wiley doi:10.1002/ecs2.2315.
  • Devine, A. P., R. A. McDonald, T. Quaife, and I. M. D. Maclean. 2017. “Determinants of Woody Encroachment and Cover in African Savannas.” Oecologia 183 (4): 939–951. doi:10.1007/s00442-017-3807-6.
  • Eldridge, D. J., S. Reed, S. K. Travers, M. A. Bowker, F. T. Maestre, J. Ding, C. Havrilla, et al. 2020. ”The Pervasive and Multifaceted Influence of Biocrusts on Water in the World’s Drylands.” Global Change Biology 26 (10): 6003–6014. doi:10.1111/gcb.15232.
  • France, G., D. Hooftman, F. van Langevelde, E. Veenendaal, M. W. Steven, and J. Lloyd. 2017. ”MODIS VCF Should Not Be Used to Detect Discontinuities in Tree Cover Due to Binning Bias. A Comment on Hanan Et Al. (2014) and Staver and Hansen (2015).” Global Ecology and Biogeography: A Journal of Macroecology 26 (7): 854–859. Wiley.
  • Gallery, W. 2014. NEON Imaging Spectrometer Level 1B Calibrated Radiance. NEON.DOC.001210vA. NEON (National Ecological Observatory Network).
  • Gallery, W. 2019. NEON Algorithm Theoretical Basis Document(atbd):Cameramosaic. NEON.DOC.005052vA. NEON (National Ecological Observatory Network).
  • Gao, L., Z. Han, D. Hong, B. Zhang, and J. Chanussot. 2022. “CyCu-Net: Cycle-Consistency Unmixing Network by Learning Cascaded Autoencoders.” IEEE Transactions on Geoscience and Remote Sensing. doi:10.1109/tgrs.2021.3064958.
  • Gao, L., Z. Wang, L. Zhuang, H. Yu, B. Zhang, and J. Chanussot. 2022. “Using Low-Rank Representation of Abundance Maps and Nonnegative Tensor Factorization for Hyperspectral Nonlinear Unmixing.” IEEE Transactions on Geoscience and Remote Sensing. doi:10.1109/tgrs.2021.3065990.
  • Gillan, J. K., G. E. Ponce‐campos, T. L. Swetnam, A. Gorlier, P. Heilman, and M. P. McClaran. 2021. “Innovations to Expand Drone Data Collection and Analysis for Rangeland Monitoring.” Ecosphere 12. doi:10.1002/ecs2.3649.
  • Gornish, E. S., H. Ganjurjav, M. Liang, J. L. Simonis, and M. P. McClaran. 2021. ”Identifying Restoration Opportunities Beneath Native Mesquite Canopies.” Restoration Ecology 29: 2. Wiley. doi:10.1111/rec.13334.
  • Goulden, T. 2018. L3 Discrete LiDar Processing and QA Informan on for 2018 SRER 2. NEON AOP QA Report. NEON (National Ecological Observatory Network).
  • Goulden, T. and Scholl V.2019. NEON Algorithm Theoretical Basis Document (ATBD): Ecosystem Structure. NEON.DOC.002387vA. NEON (National Ecological Observatory Network).
  • Han, Z., D. Hong, L. Gao, B. Zhang, and J. Chanussot. 2021. “Deep Half-Siamese Networks for Hyperspectral Unmixing.” IEEE Geoscience and Remote Sensing Letters. doi:10.1109/lgrs.2020.3011941.
  • Han, Z., D. Hong, L. Gao, J. Yao, B. Zhang, and J. Chanussot. 2022. “Multimodal Hyperspectral Unmixing: Insights from Attention Networks.” IEEE Transactions on Geoscience and Remote Sensing. doi:10.1109/tgrs.2022.3155794.
  • Hansen, M. C., R. S. DeFries, J. R. G. Townshend, M. Carroll, C. Dimiceli, and R. A. Sohlberg. 2003. “Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm.” Earth Interactions. doi:10.1175/1087-3562(2003)007<0001:gptcaa>2.0.co;2.
  • Hartley, A. J., N. MacBean, G. Georgievski, and S. Bontemps. 2017. ”Uncertainty in Plant Functional Type Distributions and Its Impact on Land Surface Models.” Remote Sensing of Environment 203 (December): 71–89. Elsevier. 10.1016/j.rse.2017.07.037.
  • Heylen, R., M. Parente, and P. Gader. 2014. “A Review of Nonlinear Hyperspectral Unmixing Methods.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. doi:10.1109/jstars.2014.2320576.
  • Hill, L. J. R., J.-P. Guerschman, A. S. Marks, and D. J. Barrett. 2013. ”Use of Vegetation Index ‘Fingerprints’ from Hyperion Data to Characterize Vegetation States Within Land Cover/land Use Types in an Australian Tropical Savanna.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 6 (2): 309–319. Institute of Electrical and Electronics Engineers (IEEE) doi:10.1109/JSTARS.2012.2222873.
  • Hong, D., L. Gao, J. Yao, N. Yokoya, J. Chanussot, U. Heiden, and B. Zhang. 2021. “Endmember-Guided Unmixing Network (EGU-Net): A General Deep Learning Framework for Self-Supervised Hyperspectral Unmixing.” IEEE Transactions on Neural Networks and Learning Systems. doi:10.1109/tnnls.2021.3082289.
  • Hong, D., L. Gao, N. Yokoya, J. Yao, J. Chanussot, Q. Du, and B. Zhang. 2021. “More Diverse Means Better: Multimodal Deep Learning Meets Remote-Sensing Imagery Classification.” IEEE Transactions on Geoscience and Remote Sensing. doi:10.1109/tgrs.2020.3016820.
  • Huang, C.-Y., S. E. Marsh, M. P. McClaran, and S. R. Archer. 2007. “Postfire Stand Structure in a Semiarid Savanna: Cross-Scale Challenges Estimating Biomass.” Ecological Applications: A Publication of the Ecological Society of America 17 (7): 1899–1910. doi:10.1890/06-1968.1.
  • Huang, C.-Y., S. R. Archer, M. P. McClaran, and S. E. Marsh. 2018. “Shrub Encroachment into Grasslands: End of an Era?” PeerJ 6 (September): e5474. doi:10.7717/peerj.5474.
  • Jia, K., S. Liang, S. Liu, Y. Li, Z. Xiao, Y. Yao, B. Jiang, et al. 2015. ”Global Land Surface Fractional Vegetation Cover Estimation Using General Regression Neural Networks from MODIS Surface Reflectance.” IEEE Transactions on Geoscience and Remote Sensing: A Publication of the IEEE Geoscience and Remote Sensing Society 539:4787–4796. Institute of Electrical and Electronics Engineers (IEEE). 10.1109/TGRS.2015.2409563
  • Jiapaer, G., X. Chen, and A. Bao. 2011. ”A Comparison of Methods for Estimating Fractional Vegetation Cover in Arid Regions.” Agricultural and Forest Meteorology 151 (12): 1698–1710. Elsevier BV.
  • Karpowicz, B. and Kampe T. 2015. NEON Imaging Spectrometer Radiance to Reflectance Algorithm Theoretical Basis Document. NEON.DOC.001288vA. NEON (National Ecological Observatory Network).
  • Khosravipour, A., A. K. Skidmore, M. Isenburg, T. Wang, and Y. A. Hussin. 2014. “Generating Pit-Free Canopy Height Models from Airborne Lidar.” Photogrammetric Engineering & Remote Sensing 80: 863–872. doi:10.14358/pers.80.9.863.
  • Lunt, I. D., L. M. Winsemius, S. P. McDonald, J. W. Morgan, and R. L. Dehaan. 2010. “How Widespread is Woody Plant Encroachment in Temperate Australia? Changes in Woody Vegetation Cover in Lowland Woodland and Coastal Ecosystems in Victoria from 1989 to 2005.” Journal of Biogeography 37: 722–732. doi:10.1111/j.1365-2699.2009.02255.x.
  • MacBean, N., R. L. Scott, J. A. Biederman, P. Peylin, T. Kolb, M. E. Litvak, P. Krishnan, et al. 2021. ”Dynamic Global Vegetation Models Underestimate Net CO2 Flux Mean and Inter-Annual Variability in Dryland Ecosystems.” Environmental Research Letters. doi:10.1088/1748-9326/ac1a38.
  • Maestre, F. T., C. Escolar, M. Ladrón Guevara, J. L. Quero, R. Lázaro, M. Delgado-Baquerizo, V. Ochoa, M. Berdugo, B. Gozalo, and A. Gallardo. 2014. ”Changes in Biocrust Cover Drive Carbon Cycle Responses to Climate Change in Drylands.” Global Change Biology 20 (8): 2697–2698. Wiley doi:10.1111/gcb.12659.
  • Maggiori, E., A. Plaza, and Y. Tarabalka. 2018. “Models for Hyperspectral Image Analysis: From Unmixing to Object-Based Classification.” Mathematical Models for Remote Sensing Image Processing. doi:10.1007/978-3-319-66330-2_2.
  • Marconi, S., S. J. Graves, B. G. Weinstein, S. Bohlman, and E. P. White. 2021. “Estimating Individual-Level Plant Traits at Scale.” Ecological Applications: A Publication of the Ecological Society of America 31 (4): e02300. doi:10.1002/eap.2300.
  • McClaran, M. P. 2003. “A Century of Vegetation Change on the Santa Rita Experimental Range.” In Santa Rita Experimental Range: 100 Years (1903 to 2003) of Accomplishments and Contributions. Proceedings RMRS-P-30. Ogden, UT: US Department of Agriculture Forest Service.
  • Millard, K. and M. Richardson. 2015. “On the Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping.” Remote Sensing 7 (7): 8489–8515.
  • Mishra, N. B. and K. A. Crews. 2014. ”Estimating Fractional Land Cover in Semi-Arid Central Kalahari: The Impact of Mapping Method (Spectral Unmixing Vs. Object-Based Image Analysis) and Vegetation Morphology.” Geocarto International 29 (8): 860–877. Informa UK Limited.
  • Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, K. D. Tape, et al. 2011. ”Shrub Expansion in Tundra Ecosystems: Dynamics, Impacts and Research Priorities”. Environmental Research Letters 6: 045509. doi:10.1088/1748-9326/6/4/045509.
  • Naidoo, L., M. A. Cho, R. Mathieu, and G. Asner. 2012. ”Classification of Savanna Tree Species, in the Greater Kruger National Park Region, by Integrating Hyperspectral and LiDar Data in a Random Forest Data Mining Environment.” ISPRS Journal of Photogrammetry and Remote Sensing: Official Publication of the International Society for Photogrammetry and Remote Sensing 69 April, Elsevier BV: 167–179. 10.1016/j.isprsjprs.2012.03.005.
  • National Land Cover Database (NLCD). 2020. 2016 Shrubland Fractional Components for the Western U.S. (Ver. 3.0, July 2020). 10.5066/P9MJVQSQ.
  • Scott, R. L., J. A. Biederman, E. P. Hamerlynck, and G. A. Barron-Gafford. 2015. ”The Carbon Balance Pivot Point of Southwestern U.S. Semiarid Ecosystems: Insights from the 21st Century Drought.” Journal of Geophysical Research: Biogeosciences 120 (12): 2612–2624. American Geophysical Union (AGU).
  • Smith, W. K., M. P. Dannenberg, D. Yan, S. Herrmann, M. L. Barnes, G. A. Barron-Gafford, J. A. Biederman, et al. 2019. ”Remote Sensing of Dryland Ecosystem Structure and Function: Progress, Challenges, and Opportunities”. Remote Sensing of Environment 233: 111401. doi:10.1016/j.rse.2019.111401.
  • Staver, A. C. and C. H. Matthew. 2015. ”Analysis of Stable States in Global Savannas: Is the CART Pulling the Horse? - a Comment.” Global Ecology and Biogeography: A Journal of Macroecology 24 (8): 985–987. Wiley doi:10.1111/geb.12285.
  • Staver, A., A. Carla, C. Staver, J. Botha, and L. Hedin. 2017. “Soils and Fire Jointly Determine Vegetation Structure in an African Savanna.” The New Phytologist 216: 1151–1160. doi:10.1111/nph.14738.
  • Swatantran, A., R. Dubayah, D. Roberts, M. Hofton, and J. Bryan Blair. 2011. “Mapping Biomass and Stress in the Sierra Nevada Using Lidar and Hyperspectral Data Fusion.” Remote Sensing of Environment 115: 2917–2930. doi:10.1016/j.rse.2010.08.027.
  • Tiribelli, F., T. Kitzberger, and J. Manuel Morales. 2018. ”Changes in Vegetation Structure and Fuel Characteristics Along Post-Fire Succession Promote Alternative Stable States and Positive Fire-Vegetation Feedbacks.” Journal of Vegetation Science: Official Organ of the International Association for Vegetation Science 29 (2): 147–156. Wiley.
  • Ustin, S. L., D. A. Roberts, J. A. Gamon, G. P. Asner, and R. O. Green. 2004. ”Using Imaging Spectroscopy to Study Ecosystem Processes and Properties.” Bioscience 54: 6–523. Oxford University Press (OUP). doi:10.1641/0006-3568(2004)054[0523:UISTSE]2.0.CO;2.
  • Varga, T. A. and G. P. Asner. 2008. “Hyperspectral and LiDar Remote Sensing of Fire Fuels in Hawaii Volcanoes National Park.” Ecological Applications: A Publication of the Ecological Society of America 18 (3): 613–623. doi:10.1890/07-1280.1.
  • Venter, Z. S., M. D. Cramer, and H.-J. Hawkins. 2018. “Drivers of Woody Plant Encroachment Over Africa.” Nature Communications 9 (1): 2272. doi:10.1038/s41467-018-04616-8.
  • Wanner, W., X. Li, and A. H. Strahler. 1995. “On the Derivation of Kernels for Kernel-Driven Models of Bidirectional Reflectance.” Journal of Geophysical Research. doi:10.1029/95jd02371.
  • Winter, M. E. 1999. “N-FINDR: An Algorithm for Fast Autonomous Spectral End-Member Determination in Hyperspectral Data.” Imaging Spectrometry V. doi:10.1117/12.366289.
  • Wu, J.-C. and G.-C. Tsuei. 2013. “Comparison of Hyperspectral Endmember Extraction Algorithms.” Journal of Applied Remote Sensing 7: 073525. doi:10.1117/1.jrs.7.073525.
  • Xiao, J. and A. Moody. 2005. ”A Comparison of Methods for Estimating Fractional Green Vegetation Cover Within a Desert-To-Upland Transition Zone in Central New Mexico, USA.” Remote Sensing of the Environment 98: 2–3–250237–250. Elsevier BV.
  • Yang, L., S. Jin, P. Danielson, C. Homer, L. Gass, S. M. Bender, A. Case, et al. 2018. ”A New Generation of the United States National Land Cover Database: Requirements, Research Priorities, Design, and Implementation Strategies”. ISPRS Journal of Photogrammetry and Remote Sensing 146: 108–123. doi:10.1016/j.isprsjprs.2018.09.006.
  • Yang, X. and K. A. Crews. 2019. ”Fractional Woody Cover Mapping of Texas Savanna at Landsat Scale.” Land 8: 1–9. Multidisciplinary Digital Publishing Institute. doi:10.3390/land8010009.
  • Zhang, W., M. Brandt, Q. Wang, A. V. Prishchepov, C. J. Tucker, Y. Li, H. Lyu, and R. Fensholt. 2019. “From Woody Cover to Woody Canopies: How Sentinel-1 and Sentinel-2 Data Advance the Mapping of Woody Plants in Savannas.” Remote Sensing of Environment. doi:10.1016/j.rse.2019.111465.