361
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Wildfire detection through deep learning based on Himawari-8 satellites platform

ORCID Icon, , , , &

References

  • Akagic, A. and E. Buza. 2022. “LW-FIRE: A Lightweight Wildfire Image Classification with a Deep Convolutional Neural Network.” Applied Sciences 12 (5): 2646. https://www.mdpi.com/2076-3417/12/5/2646
  • Arslan, Ismail., Ali. Z. Alkar, and Ieee. 2014. “REAL-TIME WILDFIRE SMOKE DETECTION on MOVING Camera.Signal Processing and Communications Applications Conference [2014 22nd Signal Processing and Communications Applications Conference (Siu)].” 22nd IEEE Signal Processing and Communications Applications Conference (SIU), Trabzon, TURKEY:Karadeniz Teknik Univ, April 23-25.
  • Ban, Y., P. Zhang, A. Nascetti, A. R. Bevington, and M. A. Wulder. 2020. ”Near Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time Series and Deep Learning.” Scientific Reports 10 (1): Article 1322. doi:10.1038/s41598-019-56967-x.
  • Blaschke, T. 2010. “Object Based Image Analysis for Remote Sensing.” Isprs Journal of Photogrammetry and Remote Sensing 65 (1): 2–16. doi:10.1016/j.isprsjprs.2009.06.004.
  • Dewangan, A., Y. Pande, H. W. Braun, F. Vernon, I. Perez, I. Altintas, and M. H. Nguyen. 2022. ”FIgLib & SmokeyNet: Dataset and Deep Learning Model for Real-Time Wildland Fire Smoke Detection.” Remote Sensing 14 (4): 1007. Article 1007. doi:10.3390/rs14041007.
  • Dupuy, J. L., H. Fargeon, N. K. Martin-Stpaul, F. Pimont, J. Ruffault, M. Guijarro, and P. Fernandes. 2020. ”Climate Change Impact on Future Wildfire Danger and Activity in Southern Europe: A Review”. Annals of Forest Science 77(2). Article 35. doi:10.1007/s13595-020-00933-5.
  • Giglio, L., J. Descloitres, C. O. Justice, and Y. J. Kaufman. 2003. “An Enhanced Contextual Fire Detection Algorithm for MODIS.” Remote Sensing of Environment 87 (2–3): 273–282. doi:10.1016/s0034-4257(03)00184-6.
  • Habiboglu, Y. H., O. Gunay, and A. E. Cetin . 2011. “REAL-TIME WILDFIRE DETECTION USING CORRELATION DESCRIPTORS.European Signal Processing Conference [19th European signal processing conference (eusipco-2011)].” 19th European Signal Processing Conference (EUSIPCO), Barcelona, SPAIN, Aug 29-Sep 02.
  • Hong, Z., Z. Tang, H. Pan, Y. Zhang, Z. Zheng, R. Zhou, S. Yang, Ma Z, Zhang Y, Han Y, and Wang J. 2022. “Active Fire Detection Using a Novel Convolutional Neural Network Based on Himawari-8 Satellite Images [Original Research].” Frontiers in Environmental Science 10. doi:10.3389/fenvs.2022.794028.
  • Isensee, F., P. F. Jaeger, S. A. A. Kohl, J. Petersen, and K. H. Maier-Hein. 2021. “nnU-Net: A Self-Configuring Method for Deep Learning-Based Biomedical Image Segmentation.” Nature Methods 18 (2): 203±. doi:10.1038/s41592-020-01008-z.
  • Khennou, Fadoua., Jade. Ghaoui, and Mouley. A. Akhloufi. 2021. “Forest Fire Spread Prediction Using Deep Learning.Proceedings of SPIE [Geospatial Informatics Xi].” Conference on Geospatial Informatics XI: Electr Network, April 12-16.
  • Li, B. N., C. K. Chui, S. Chang, and S. H. Ong. 2011. “Integrating Spatial Fuzzy Clustering with Level Set Methods for Automated Medical Image Segmentation.” Computers in Biology and Medicine 41 (1): 1–10. doi:10.1016/j.compbiomed.2010.10.007.
  • Li, R. R., W. J. Liu, L. Yang, S. H. Sun, W. Hu, F. Zhang, and W. Li. 2018. “DeepUnet: A Deep Fully Convolutional Network for Pixel-Level Sea-Land Segmentation.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11 (11): 3954–3962. doi:10.1109/jstars.2018.2833382.
  • Mao, J., C. E. Zheng, J. Y. Yin, Y. Tian, and W. B. Cui. 2021. ”Wildfire Smoke Classification Based on Synthetic Images and Pixel- and Feature-Level Domain Adaptation.” Sensors 21 (23): 7785. Article 7785. doi:10.3390/s21237785.
  • McCarthy, N. F., A. Tohidi, Y. Aziz, M. Dennie, M. M. Valero, and N. Hu. 2021. “A Deep Learning Approach to Downscale Geostationary Satellite Imagery for Decision Support in High Impact Wildfires.” Forests 12 (3): 294. https://www.mdpi.com/1999-4907/12/3/294
  • Morisette, J. T., L. Giglio, I. Csiszar, A. Setzer, W. Schroeder, D. Morton, and C. O. Justice. 2005. “Validation of MODIS Active Fire Detection Products Derived from Two Algorithms.” Earth Interactions 9 (9): 1–25. doi: 10.1000/241213200001.
  • Murphy, S. W., C. R. de Souza, R. Wright, G. Sabatino, and R. C. Pabon. 2016. “HOTMAP: Global Hot Target Detection at Moderate Spatial Resolution.” Remote Sensing of Environment 177: 78–88. doi:10.1016/j.rse.2016.02.027.
  • Nguyen Thanh, Toan., Cong. Phan Thanh, Hung. Nguyen Quoc Viet, Jun. Jo, and Ieee. 2019. A Deep Learning Approach for Early Wildfire Detection from Hyperspectral Satellite Images. [2019 7th International Conference on Robot Intelligence Technology and Applications (Rita)]. 7th International Conference on Robot Intelligence Technology and Applications (RiTA), KAIST, Daejeon, SOUTH KOREA, November 01-03.
  • Pais, C., A. Miranda, J. Carrasco, and Z. J. M. Shen. 2021. ”Deep Fire Topology: Understanding the Role of Landscape Spatial Patterns in Wildfire Occurrence Using Artificial Intelligence.” Environmental Modelling & Software 143. Article 105122. doi:10.1016/j.envsoft.2021.105122.
  • Papadopoulos, Dim. P., Jasper. R. R. Uijlings, Frank. Keller, Vittorio. Ferrari, and Ieee. 2017. “Extreme Clicking for Efficient Object Annotation.Ieee.” International Conference on Computer Vision [2017 ieee international conference on computer vision (iccv)]. 16th IEEE International Conference on Computer Vision (ICCV), Venice, ITALY, October 22-29.
  • Park, JunOh., ByoungChul. Ko, Jae-Yeal. Nam, SooYeong. Kwak, and Ieee. 2013. “Wildfire Smoke Detection Using SpatioTemporal Bag-Of-Features of Smoke.Ieee.” Workshop on Applications of Computer Vision [2013 ieee workshop on applications of computer vision (wacv)]. IEEE Workshop on Applications of Computer Vision (WACV), Clearwater, FL, January 15-17.
  • Paugam, R., M. J. Wooster, and G. Roberts. 2013. “Use of Handheld Thermal Imager Data for Airborne Mapping of Fire Radiative Power and Energy and Flame Front Rate of Spread.” IEEE Transactions on Geoscience and Remote Sensing 51 (6): 3385–3399. doi:10.1109/tgrs.2012.2220368.
  • Pham, D. L., C. Xu, and J. L. Prince. 2000. “Current Methods in Medical Image Segmentation.” Annual Review of Biomedical Engineering 2 (1): 315–337. doi:10.1146/annurev.bioeng.2.1.315.
  • Rajchl, M., M. C. H. Lee, O. Oktay, K. Kamnitsas, J. Passerat-Palmbach, W. Bai, Damodaram M, Rutherford MA, Hajnal JV, Kainz B, and D. Rueckert. 2017. “DeepCut: Object Segmentation from Bounding Box Annotations Using Convolutional Neural Networks.” IEEE Transactions on Medical Imaging 36 (2): 674–683. doi:10.1109/tmi.2016.2621185.
  • Ronneberger, O., P. Fischer, and T. Brox. 2015. “U-Net: Convolutional Networks for Biomedical Image Segmentation.Lecture Notes in Computer Science [Medical Image Computing and Computer-Assisted Intervention, Pt Iii].” 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, GERMANY, October 05-09.
  • Wilfrid Schroeder, E. P., L. Giglio, I. Csiszar, C. Schmidt, J. Morisette, and D. Morton. 2008. “Validation of GOES and MODIS Active Fire Detection Products Using ASTER and ETM+ Data.” Remote Sensing of Environment 112 (5): 2711–2726. doi:10.1016/j.rse.2008.01.005.
  • Wooster, M. J., G. Roberts, G. L. W. Perry, and Y. J. Kaufman. 2005. ”Retrieval of Biomass Combustion Rates and Totals from Fire Radiative Power Observations: FRP Derivation and Calibration Relationships Between Biomass Consumption and Fire Radiative Energy Release.” Journal of Geophysical Research-Atmospheres 110 (D24): Article D24311. doi:10.1029/2005jd006318.
  • Yue, X., L. J. Mickley, J. A. Logan, and J. O. Kaplan. 2013. “Ensemble Projections of Wildfire Activity and Carbonaceous Aerosol Concentrations Over the Western United States in the Mid-21st Century.” Atmospheric Environment 77: 767–780. doi:10.1016/j.atmosenv.2013.06.003.
  • Zhang, X. X., Y. H. Yang, Z. Y. Li, X. Ning, Y. L. Qin, and W. W. Cai. 2021. ”An Improved Encoder-Decoder Network Based on Strip Pool Method Applied to Segmentation of Farmland Vacancy Field”. Entropy 23(4). Article 435. doi:10.3390/e23040435.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.