235
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Spatio-temporal fire detection based on brightness temperature change in Himawari-8 images

, , ORCID Icon, ORCID Icon &
Pages 6333-6348 | Received 20 Jul 2022, Accepted 10 Oct 2022, Published online: 09 Nov 2022

References

  • Arino, O., S. Casadio, and D. Serpe. 2012. ”Global Night-Time Fire Season Timing and Fire Count Trends Using the ATSR Instrument Series.” Remote Sensing of Environment 116: 226–238. doi:10.1016/j.rse.2011.05.025, Elsevier Inc.
  • Bessho, K., K. Date, M. Hayashi, A. Ikeda, T. Imai, H. Inoue, Y. Kumagai, et al. 2016. ”An Introduction to Himawari-8/9— Japan’s New-Generation Geostationary Meteorological Satellites.” Journal of the Meteorological Society of Japan 94 (2): 151–183. doi:10.2151/jmsj.2016-009.
  • Ciuc, M., P. Bolon, E. Trouvé, V. Buzuloiu, and J.-P. Rudant. 2001. “Adaptive-Neighborhood Speckle Removal in Multitemporal Synthetic Aperture Radar Images.” Applied Optics 40 (32): 5954. doi:10.1364/ao.40.005954.
  • Da, C. 2015. “Preliminary Assessment of the Advanced Himawari Imager (AHI) Measurement Onboard Himawari-8 Geostationary Satellite.” Remote Sensing Letters 6 (8): 637–646. doi:10.1080/2150704X.2015.1066522.
  • Duggin, M. J., and D. Piwinski. 1984. “Recorded Radiance Indices for Vegetation Monitoring Using NOAA AVHRR Data; Atmospheric and Other Effects in Multitemporal Data Sets.” Applied Optics 23 (15): 2620. doi:10.1364/ao.23.002620.
  • Feng, H. L., G. Zhang, and, and S.Q. Tan. 2021. ”Discrimination of Forest Fire Based on Himawari-8 Satellite Data.” Journal of Central South University 2021.08.009 418:75–83. 10.14067/j.cnki.1673-923x
  • Filizzola, C., R. Corrado, F. Marchese, G. Mazzeo, R. Paciello, N. Pergola, and V. Tramutoli. 2016. ”RST-FIRES, an Exportable Algorithm for Early-Fire Detection and Monitoring: Description, Implementation, and Field Validation in the Case of the MSG-SEVIRI Sensor.” Remote Sensing of Environment 186: 196–216. doi:10.1016/j.rse.2016.08.008, Elsevier Inc.
  • Flasse, S. P., and P. Ceccato. 1996. “A Contextual Algorithm for AVHRR Fire Detection.” International Journal of Remote Sensing 17 (2): 419–424. doi:10.1080/01431169608949018.
  • Fornacca, D., G. Ren, and W. Xiao. 2017. “Performance of Three MODIS Fire Products (MCD45A1, MCD64A1, MCD14ML), and ESA Fire_cci in a Mountainous Area of Northwest Yunnan, China, Characterized by Frequent Small Fires.” Remote Sensing 9 (11): 1–20. doi:10.3390/rs9111131.
  • Freeborn, P. H., M. J. Wooster, G. Roberts, B. D. Malamud, and W. Xu. 2009. ”Development of a Virtual Active Fire Product for Africa Through a Synthesis of Geostationary and Polar Orbiting Satellite Data.” Remote Sensing of Environment 113 (8): 1700–1711. Elsevier Inc. doi:10.1016/j.rse.2009.03.013.
  • Freeborn, P. H., M. J. Wooster, G. Roberts, and W. Xu. 2014. “Evaluating the SEVIRI Fire Thermal Anomaly Detection Algorithm Across the Central African Republic Using the MODIS Active Fire Product.” Remote Sensing 6 (3): 1890–1917. doi:10.3390/rs6031890.
  • Giovanni, L., M. M. Castronuovo, and E. G. Cadau. 2006. “Continuous Monitoring of Forest Fires in the Mediterranean Area Using MSG.” IEEE Transactions on Geoscience and Remote Sensing 44 (10): 2761–2768. doi:10.1109/TGRS.2006.881716.
  • Gong, A., J. Li, and Y. Chen. 2021. “A Spatio-Temporal Brightness Temperature Prediction Method for Forest Fire Detection with Modis Data: A Case Study in San Diego.” Remote Sensing 13: 15. doi:10.3390/rs13152900.
  • Guang, X., and X. Zhong. 2017. ”Real-Time Wildfire Detection and Tracking in Australia Using Geostationary Satellite: Himawari-8.” Remote Sensing Letters 8 (11): 1052–1061. Taylor & Francis. doi:10.1080/2150704X.2017.1350303.
  • Hally, B., L. Wallace, K. Reinke, S. Jones, C. Engel, and A. Skidmore. 2018. “Estimating Fire Background Temperature at a Geostationary Scale-An Evaluation of Contextual Methods for AHI-8.” Remote Sensing 10 (9): 1–29. doi:10.3390/rs10091368.
  • Huh, Y., and J. Kang Lee. 2017. ”Enhanced Contextual Forest Fire Detection with Prediction Interval Analysis of Surface Temperature Using Vegetation Amount.” International Journal of Remote Sensing 38 (11): 3375–3393. Taylor & Francis. doi:10.1080/01431161.2017.1295481.
  • Kogan, F. N. 1995. “Application of Vegetation Index and Brightness Temperature for Drought Detection.” Advances in Space Research 15 (11): 91–100. doi:10.1016/0273-1177(95)00079-T.
  • Koltunov, A., and S. L. Ustin. 2007. “Early Fire Detection Using Non-Linear Multitemporal Prediction of Thermal Imagery.” Remote Sensing of Environment 110 (1): 18–28. doi:10.1016/j.rse.2007.02.010.
  • Lee, S., H. Han, J. Im, E. Jang, and M. In Lee. 2017. “Detection of Deterministic and Probabilistic Convection Initiation Using Himawari-8 Advanced Himawari Imager Data.” Atmospheric Measurement Techniques 10 (5): 1859–1864. doi:10.5194/amt-10-1859-2017.
  • Liming, H., and Z. Li. 2012. “Enhancement of a Fire Detection Algorithm by Eliminating Solar Reflection in the Mid-IR Band: Application to AVHRR Data.” International Journal of Remote Sensing 33 (22): 7047–7059. doi:10.1080/2150704X.2012.699202.
  • Lin, Z., F. Chen, Z. Niu, B. Li, B. Yu, H. Jia, and M. Zhang. 2018. “An Active Fire Detection Algorithm Based on Multi-Temporal FengYun-3C VIRR Data.” Remote Sensing of Environment 211 (9): 376–387. doi:10.1016/j.rse.2018.04.027.
  • Lin, L., Y. Meng, A. Yue, Y. Yuan, X. Liu, J. Chen, M. Zhang, and J. Chen. 2016. “A Spatio-Temporal Model for Forest Fire Detection Using HJ-IRS Satellite Data.” Remote Sensing 8 (5). doi:10.3390/rs8050403.
  • Louis, G., J. Descloitres, C. O. Justice, and Y. J. Kaufman. 2003. “An Enhanced Contextual Fire Detection Algorithm for MODIS.” Remote Sensing of Environment 87 (2–3): 273–282. doi:10.1016/S0034-4257(03)00184-6.
  • Louis, G., W. Schroeder, and C. O. Justice. 2016. ”The Collection 6 MODIS Active Fire Detection Algorithm and Fire Products.” Remote Sensing of Environment 178: 31–41. The Authors. doi:10.1016/j.rse.2016.02.054.
  • Plank, S., E. Maria Fuchs, and C. Frey. 2017. “A Fully Automatic Instantaneous Fire Hotspot Detection Processor Based on AVHRR Imagery—a TIMELINE Thematic Processor.” Remote Sensing 9 (1): 30. doi:10.3390/rs9010030.
  • Roberts, G. J., and M. J. Wooster. 2008. “Fire Detection and Fire Characterization Over Africa Using Meteosat SEVIRI.” IEEE Transactions on Geoscience and Remote Sensing 46 (4): 1200–1218. doi:10.1109/TGRS.2008.915751.
  • Roberts, G., and M. J. Wooster. 2014. ”Development of a Multi-Temporal Kalman Filter Approach to Geostationary Active Fire Detection & Fire Radiative Power (FRP) Estimation.” Remote Sensing of Environment 152: 392–412. Elsevier Inc. doi:10.1016/j.rse.2014.06.020.
  • Schultz, M. G., A. Heil, J. J. Hoelzemann, A. Spessa, K. Thonicke, J. G. Goldammer, A. C. Held, J. M. C. Pereira, and M. van Het Bolscher. 2008. “Global Wildland Fire Emissions from 1960 to 2000.” Global Biogeochemical Cycles 22 (2): 1–17. doi:10.1029/2007GB003031.
  • Tan, X. L., H. R. Yi, and P. Ji. 2000. “A Method to Automatically Identify Small Burning Spots by Using AVHRR Data.” Remote Sensing Technology and Application 01: 36–40.
  • Taylor, P., J. M. Robinson, and J. M. Robinson. 2007. ”International Journal of Remote Sensing Fire from Space : Global Fire Evaluation Using Infrared Remote Sensing.” International Journal of Remote Sensing 12: 37–41. May 2013.
  • Van Den Bergh, F., G. Udahemuka, and B. J. Van Wyk. 2009. “Potential Fire Detection Based on Kalman-Driven Change Detection.” International Geoscience and Remote Sensing Symposium (IGARSS) 4: 77–80. doi:10.1109/IGARSS.2009.5417370.
  • Wang, S. D., L. L. Miao, and G. X. Peng. 2012. “An Improved Algorithm for Forest Fire Detection Using HJ Data.” Procedia Environmental Sciences 13 (2011): 140–150. doi:10.1016/j.proenv.2012.01.014.
  • Wickramasinghe, C., L. Wallace, K. Reinke, and S. Jones. 2018. ”Implementation of a New Algorithm Resulting in Improvements in Accuracy and Resolution of SEVIRI Hotspot Products.” Remote Sensing Letters 9 (9): 877–885. Taylor & Francis. doi:10.1080/2150704X.2018.1484955.
  • Wooster, M. J., W. Xu, and T. Nightingale. 2012. “Sentinel-3 SLSTR Active Fire Detection and FRP Product: Pre-Launch Algorithm Development and Performance Evaluation Using MODIS and ASTER Datasets.” Remote Sensing of Environment 120: 236–254. doi:10.1016/j.rse.2011.09.033.
  • Xie, Z., W. Song, R. Ba, X. Li, and L. Xia. 2018. “A Spatiotemporal Contextual Model for Forest Fire Detection Using Himawari-8 Satellite Data.” Remote Sensing 10 (12): 1–24. doi:10.3390/rs10121992.
  • Xiong, D. X., S. Q. Tan, and G. Zhang. 2020. ”Forest Fire Discrimination Research Based on FY4 Remote Sensing Data.” Journal of Central South University of Forestry & Technology 40 (10): 42–50. doi:10.14067/j.cnki.1673-923x.2020.10.005.
  • Yan, J. J., J. H. Qu, M. N. Ran, and F. F. Zhang. 2020. “Himawari-8 AHI Fire Detection in Clear Sky Based on Time-Phase Change.” Journal of Remote Sensing (Chinese) 24 (5): 571–577.
  • Zhang, X., G. Yang, N. Zhan, and H. Ji. 2015. “Gray Change Detection Method for Damage Monitoring in Materials.” Applied Optics 54 (4): 934. doi:10.1364/ao.54.000934.
  • Zhang, Y., C. Zhao, Y. Wu, and J. Luo. 2022. “Remote Sensing Image Cloud Removal by Deep Image Prior with a Multitemporal Constraint.” Optics Continuum 1 (2): 215. doi:10.1364/optcon.439671.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.