177
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Self-calibrated dilated convolutional neural networks for SAR image despeckling

, , , , , & show all
Pages 6483-6508 | Received 06 Apr 2022, Accepted 20 Oct 2022, Published online: 15 Nov 2022

References

  • Amrani, M., A. Bey, and A. Amamra. 2021. “New SAR Target Recognition Based on YOLO and Very Deep Multi-Canonical Correlation Analysis.” International Journal of Remote Sensing 1–20. doi:10.1080/01431161.2021.1953719.
  • Amrani, M., S. Chaib, I. Omara, and F. Jiang. 2017a. “Bag-Of-Visual-Words Based Feature Extraction for SAR Target Classification.” In Ninth International Conference on Digital Image Processing (ICDIP), Vol. 10420, Hong Kong, China, July, 104201J. doi: 10.1117/12.2281707.
  • Amrani, M., and F. Jiang. 2017. “Deep Feature Extraction and Combination for Synthetic Aperture Radar Target Classification.” Journal of Applied Remote Sensing 11 (4): 1–18. doi:10.1117/1.JRS.11.042616.
  • Amrani, M., F. Jiang, Y. Xu, S. Liu, and S. Zhang. 2018. “SAR-Oriented Visual Saliency Model and Directed Acyclic Graph Support Vector Metric Based Target Classification.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11 (10): 3794–3810. doi:10.1109/JSTARS.2018.2866684.
  • Amrani, M., K. Yang, D. Zhao, X. Fan, and F. Jiang. 2017b. “An Efficient Feature Selection for SAR Target Classification.” In Pacific Rim Conference on Multimedia (PCM), Vol. 10736, Harbin, China, September, 68–78. doi: 10.1007/978-3-319-77383-4_7.
  • Anfinsen, S. N., A. Paul Doulgeris, and T. Eltoft. 2009. “Estimation of the Equivalent Number of Looks in Polarimetric Synthetic Aperture Radar Imagery.” IEEE Transactions on Geoscience and Remote Sensing 47 (11): 3795–3809. doi:10.1109/TGRS.2009.2019269.
  • Aubert, G., and J.-F. Aujol. 2008. “A Variational Approach to Removing Multiplicative Noise.” SIAM Journal on Applied Mathematics 68 (4): 925–946. doi:10.1137/060671814.
  • Azarang, A., and N. Kehtarnavaz. 2020. “Image Fusion in Remote Sensing by Multi-Objective Deep Learning.” International Journal of Remote Sensing 41 (24): 9507–9524. doi:10.1080/01431161.2020.1800126.
  • Bai, Y.-C., S. Zhang, M. Chen, P. Yi-Fei, and J. Zhou. 2018. “A Fractional Total Variational CNN Approach for SAR Image Despeckling.” In Intelligent Computing Methodologies - 14th International Conference (ICIC), Wuhan, China, August, 431–442. doi: 10.1007/978-3-319-95957-3_46.
  • Bioucas-Dias, J. M., and M. A. T. Figueiredo. 2010. “Multiplicative Noise Removal Using Variable Splitting and Constrained Optimization.” IEEE Transactions on Image Processing 19 (7): 1720–1730. doi:10.1109/TIP.2010.2045029.
  • Boonpook, W., Y. Tan, and B. Xu. 2021. “Deep Learning-Based Multi-Feature Semantic Segmentation in Building Extraction from Images of UAV Photogrammetry.” International Journal of Remote Sensing 42 (1): 1–19. doi:10.1080/01431161.2020.1788742.
  • Cozzolino, D., S. Parrilli, G. Scarpa, G. Poggi, and L. Verdoliva. 2014. “Fast Adaptive Nonlocal SAR Despeckling.” IEEE Geoscience and Remote Sensing Letters 11 (2): 524–528. doi:10.1109/LGRS.2013.2271650.
  • Deledalle, C.-A., L. Denis, and F. Tupin. 2009. “Iterative Weighted Maximum Likelihood Denoising with Probabilistic Patch-Based Weights.” IEEE Transactions on Image Processing 18 (12): 2661–2672. doi:10.1109/TIP.2009.2029593.
  • Dellepiane, S. G., and E. Angiati. 2014. “Quality Assessment of Despeckled SAR Images.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7 (2): 691–707. doi:10.1109/JSTARS.2013.2279501.
  • Dong, J., Z.-F. Han, Y. Zhao, W. Wang, A. Procházka, and J. A. Chambers. 2017. “Sparse Analysis Model Based Multiplicative Noise Removal with Enhanced Regularization.” Signal Processing 137: 160–176. doi:10.1016/j.sigpro.2017.01.032.
  • Fisher, Y., and V. Koltun. 2016. “Multi-Scale Context Aggregation by Dilated Convolutions.” In International Conference on Learning Representations (ICLR), San Juan, Puerto Rico, May, 1–13.
  • Fracastoro, G., E. Magli, G. Poggi, G. Scarpa, D. Valsesia, and L. Verdoliva. 2021. “Deep Learning Methods for Synthetic Aperture Radar Image Despeckling: An Overview of Trends and Perspectives.” IEEE Geoscience and Remote Sensing Magazine 9 (2): 29–51. doi:10.1109/MGRS.2021.3070956.
  • Gao, H., Z. Liu, L. van der Maaten, and K. Q. Weinberger. 2017. “Densely Connected Convolutional Networks.” In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, July, 2261–2269. doi: 10.1109/CVPR.2017.243.
  • Gui, Y., L. Xue, and X. Li. 2018. “SAR Image Despeckling Using a Dilated Densely Connected Network.” Remote Sensing Letters 9 (9): 857–866. doi:10.1080/2150704X.2018.1492170.
  • Ioffe, S., and C. Szegedy. 2015. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.” In International Conference on Machine Learning (ICML), Vol. 37, Lille, France, 448–456.
  • Jaekyun, K., and S. Lee. 2022. “SAR Image Despeckling Using Continuous Attention Module.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15: 3–19. doi:10.1109/JSTARS.2021.3132027.
  • Jianing, S., and S. J. Osher. 2008. “A Nonlinear Inverse Scale Space Method for a Convex Multiplicative Noise Model.” SIAM Journal on Imaging Sciences 1 (3): 294–321. doi:10.1137/070689954.
  • Jingyu, L., Y. Li, Y. Xiao, and Y. Bai. 2019. “HDRANet: Hybrid Dilated Residual Attention Network for SAR Image Despeckling.” Remote Sensing 11 (24): 2921. doi:10.3390/rs11242921.
  • Kaiming, H., X. Zhang, S. Ren, and J. Sun. 2016. “Deep Residual Learning for Image Recognition.” In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, June, 770–778. doi: 10.1109/CVPR.2016.90.
  • Kingma, D. P., and J. Ba. 2015. “Adam: A Method for Stochastic Optimization.” In International Conference on Learning Representations (ICLR), San Diego, CA, USA, May.
  • Liu, J., Q. Hou, M.-M. Cheng, C. Wang, and J. Feng. 2020. “Improving Convolutional Networks with Self-Calibrated Convolutions.” In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, June, 10093–10102. doi: 10.1109/CVPR42600.2020.01011.
  • Liu, Z., R. Lai, and J. Guan. 2022. “Spatial and Transform Domain CNN for SAR Image Despeckling.” IEEE Geoscience and Remote Sensing Letters 19: 1–5. doi:10.1109/LGRS.2020.3022804.
  • Liu, S., Y. Lei, L. Zhang, B. Li, W. Hu, and Y.-D. Zhang. 2022. “MRDDANet: A Multiscale Residual Dense Dual Attention Network for SAR Image Denoising.” IEEE Transactions on Geoscience and Remote Sensing 60: 1–13. doi:10.1109/TGRS.2022.3210198.
  • Liu, S., G. Zhang, and W. Liu. 2019. “Group Sparse Representation Based Dictionary Learning for SAR Image Despeckling.” IEEE Access 7: 30809–30817. doi:10.1109/ACCESS.2019.2895825.
  • Panqu, W., P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and G. W. Cottrell. 2018. “Understanding Convolution for Semantic Segmentation.” In IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, March, 1451–1460. doi: 10.1109/WACV.2018.00163.
  • Parrilli, S., M. Poderico, C. Vincenzo Angelino, and L. Verdoliva. 2012. “A Nonlocal SAR Image Denoising Algorithm Based on LLMMSE Wavelet Shrinkage.” IEEE Transactions on Geoscience and Remote Sensing 50 (2): 606–616. doi:10.1109/TGRS.2011.2161586.
  • Passah, A., K. Amitab, and D. Kandar. 2021. “SAR Image Despeckling Using Deep CNN.” IET Image Processing 15 (6): 1285–1297. doi:10.1049/ipr2.12104.
  • Paszke, A., S Gross, F Massa, A Lerer, J Bradbury, G Chanan, T Killeen, Z Lin, N Gimelshein, L Antiga, et al. 2019. “PyTorch: An Imperative Style, High-Performance Deep Learning Library.“ In Advances in Neural Information Processing Systems (NeurIPS), Vancouver, BC, Canada, December, 8024–8035.
  • Puyang, W., H. Zhang, and V. M. Patel. 2017. “SAR Image Despeckling Using a Convolutional Neural Network.” IEEE Signal Processing Letters 24 (12): 1763–1767. doi:10.1109/LSP.2017.2758203.
  • Shen, H., C. Zhou, J. Li, and Q. Yuan. 2021. “SAR Image Despeckling Employing a Recursive Deep CNN Prior.” IEEE Transactions on Geoscience and Remote Sensing 59 (1): 273–286. doi:10.1109/TGRS.2020.2993319.
  • Sun, L., X. Yang, S. Jia, C. Jia, Q. Wang, X. Liu, J. Wei, and X. Zhou. 2020. “Satellite Data Cloud Detection Using Deep Learning Supported by Hyperspectral Data.” International Journal of Remote Sensing 41 (4): 1349–1371. doi:10.1080/01431161.2019.1667548.
  • Sun, Z., M. Zhao, and B. Jia. 2021. “A GF-3 SAR Image Dataset of Road Segmentation.” Information Technology and Control 50 (1): 89–101. doi:10.5755/j01.itc.50.1.27987.
  • Wang, P., B. Bayram, and E. Sertel. 2021. “Super-Resolution of Remotely Sensed Data Using Channel Attention Based Deep Learning Approach.” International Journal of Remote Sensing 42 (16): 6048–6065. doi:10.1080/01431161.2021.1934598.
  • Wei, S., X. Zeng, Q. Qu, M. Wang, H. Su, and J. Shi. 2020. “HRSID: A High-Resolution SAR Images Dataset for Ship Detection and Instance Segmentation.” IEEE Access 8: 120234–120254. doi:10.1109/ACCESS.2020.3005861.
  • Woo, S., J. Park, J.-Y. Lee, and I. So Kweon. 2018. “CBAM: Convolutional Block Attention Module.” In 15th European Conference Computer Vision (ECCV), Vol. 11211, Munich, Germany, September, 3–19. doi: 10.1007/978-3-030-01234-2_1.
  • Xia, G.-S., J. Hu, F. Hu, B. Shi, X. Bai, Y. Zhong, L. Zhang, and X. Lu. 2017. “AID: A Benchmark Data Set for Performance Evaluation of Aerial Scene Classification.” IEEE Transactions on Geoscience and Remote Sensing 55 (7): 3965–3981. doi:10.1109/TGRS.2017.2685945.
  • Xu, B., Y. Cui, Z. Li, and J. Yang. 2015. “An Iterative SAR Image Filtering Method Using Nonlocal Sparse Model.” IEEE Geoscience and Remote Sensing Letters 12 (8): 1635–1639. doi:10.1109/LGRS.2015.2417551.
  • Yang, Y., and S. D. Newsam. 2010. “Bag-Of-Visual-Words and Spatial Extensions for Land-Use Classification.” In ACM International Symposium on Advances in Geographic Information Systems (ACM-GIS), San Jose, CA, USA, November, 270–279. doi: 10.1145/1869790.1869829.
  • Zhang, J., W. Li, and Y. Li. 2020. “SAR Image Despeckling Using Multiconnection Network Incorporating Wavelet Features.” IEEE Geoscience and Remote Sensing Letters 17 (8): 1363–1367. doi:10.1109/LGRS.2019.2943961.
  • Zhang, Q., Q. Yuan, J. Li, Z. Yang, and X. Ma. 2018. “Learning a Dilated Residual Network for SAR Image Despeckling.” Remote Sensing 10 (2): 196. doi:10.3390/rs10020196.
  • Zhang, K., W. Zuo, Y. Chen, D. Meng, and L. Zhang. 2017. “Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising.” IEEE Transactions on Image Processing 26 (7): 3142–3155. doi:10.1109/TIP.2017.2662206.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.