183
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A weighted contextual active fire detection algorithm based on Himawari-8 data

ORCID Icon, , , , &
Pages 2400-2427 | Received 25 Nov 2022, Accepted 30 Mar 2023, Published online: 23 Apr 2023

References

  • Abuelgasim, A., and R. Fraser. 2002. “Day and Night-Time Active Fire Detection Over North America Using NOAA-16 AVHRR Data.” In IEEE International Geoscience and Remote Sensing Symposium, 3:1489–1491. doi:10.1109/IGARSS.2002.1026158.
  • Amraoui, M., C. C. DaCamara, and J. M. C. Pereira. 2010. “Detection and Monitoring of African Vegetation Fires Using MSG-SEVIRI Imagery.” Remote Sensing of Environment 114 (5): 1038–1052. doi:10.1016/j.rse.2009.12.019.
  • Arino, O., and J. M. Melinotte. 1998. “Cover the 1993 Africa Fire Map.” International Journal of Remote Sensing 19 (11): 2019–2023. Taylor & Francis. doi:10.1080/014311698214839.
  • Bessho, K., K. Date, M. Hayashi, A. Ikeda, T. Imai, H. Inoue, Y. Kumagai, et al. 2016. “An Introduction to Himawari-8/9— Japan’s New-Generation Geostationary Meteorological Satellites.” Journal of the Meteorological Society of Japan: Ser II 94 (2): 151–183. doi:10.2151/jmsj.2016-009.
  • Calle, A., J. L. Casanova, and A. Romo. 2006. “Fire Detection and Monitoring Using MSG Spinning Enhanced Visible and Infrared Imager (SEVIRI) Data.” Journal of Geophysical Research: Biogeosciences 111: G4. John Wiley & Sons, Ltd. doi:10.1029/2005JG000116.
  • Carlton, A. G., J. de Gouw, J. L. Jimenez, J. L. Ambrose, A. R. Attwood, S. Brown, K. R. Baker, et al. 2018. “Synthesis of the Southeast Atmosphere Studies: Investigating Fundamental Atmospheric Chemistry Questions.” Bulletin of the American Meteorological Society 99:3–5673–567. American Meteorological Society. doi:10.1175/BAMS-D-16-0048.1.
  • Crutzen, P. J., and M. O. Andreae. 1990. “Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles.” Science 250 (4988): 1669–1678. American Association for the Advancement of Science. doi:10.1126/science.250.4988.1669.
  • Davies, D. K., S. Ilavajhala, M. Minnie Wong, and C. O. Justice. 2009. “Fire Information for Resource Management System: Archiving and Distributing MODIS Active Fire Data.” IEEE Transactions on Geoscience and Remote Sensing 47 (1): 72–79. doi:10.1109/TGRS.2008.2002076.
  • de Bem, P. P., O. A. de Carvalho Júnior, O. L. F. de Carvalho, R. A. T. Gomes, and R. Fontes Guimarães. 2020. “Performance Analysis of Deep Convolutional Autoencoders with Different Patch Sizes for Change Detection from Burnt Areas.” Remote Sensing 12 (16): 2576. Multidisciplinary Digital Publishing Institute. doi:10.3390/rs12162576.
  • Dozier, J. 1981. “A Method for Satellite Identification of Surface Temperature Fields of Subpixel Resolution.” Remote Sensing of Environment 11 (January): 221–229. doi:10.1016/0034-4257(81)90021-3.
  • Engel, C. B., S. D. Jones, and K. Reinke. 2021. “A Seasonal-Window Ensemble-Based Thresholding Technique Used to Detect Active Fires in Geostationary Remotely Sensed Data.” IEEE Transactions on Geoscience and Remote Sensing 59 (6): 4947–4956. doi:10.1109/TGRS.2020.3018455.
  • Environment, U. N. 2022. “Spreading like Wildfire: The Rising Threat of Extraordinary Landscape Fires.” UNEP - UN Environment Programme. http://www.unep.org/resources/report/spreading-wildfire-rising-threat-extraordinary-landscape-fires.
  • Flasse, S. P., and P. Ceccato. 1996. “A Contextual Algorithm for AVHRR Fire Detection.” International Journal of Remote Sensing 17 (2): 419–424. Taylor & Francis. doi:10.1080/01431169608949018.
  • Freeborn, P. H., M. J. Wooster, and G. Roberts. 2011. “Addressing the Spatiotemporal Sampling Design of MODIS to Provide Estimates of the Fire Radiative Energy Emitted from Africa.” Remote Sensing of Environment 115 (2): 475–489. doi:10.1016/j.rse.2010.09.017.
  • Freeborn, P. H., M. J. Wooster, G. Roberts, and W. Xu. 2014. “Evaluating the SEVIRI Fire Thermal Anomaly Detection Algorithm Across the Central African Republic Using the MODIS Active Fire Product.” Remote Sensing 6: 3. Multidisciplinary Digital Publishing Institute: 1890–1917. doi:10.3390/rs6031890.
  • Giglio, L., I. Csiszar, Á. Restás, J. T. Morisette, W. Schroeder, D. Morton, and C. O. Justice. 2008. “Active Fire Detection and Characterization with the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER).” Remote Sensing of Environment 112 (6): 3055–3063. doi:10.1016/j.rse.2008.03.003.
  • Giglio, L., J. Descloitres, C. O. Justice, and Y. J. Kaufman. 2003. “An Enhanced Contextual Fire Detection Algorithm for MODIS.” Remote Sensing of Environment 87 (2): 273–282. doi:10.1016/S0034-4257(03)00184-6.
  • Giglio, L., J. D. Kendall, and C. O. Justice. 1999. “Evaluation of Global Fire Detection Algorithms Using Simulated AVHRR Infrared Data.” International Journal of Remote Sensing 20 (10): 1947–1985. Taylor & Francis. doi:10.1080/014311699212290.
  • Giglio, L., W. Schroeder, and C. O. Justice. 2016. “The Collection 6 MODIS Active Fire Detection Algorithm and Fire Products.” Remote Sensing of Environment 178 (June): 31–41. doi:10.1016/j.rse.2016.02.054.
  • Hally, B., L. Wallace, K. Reinke, and S. Jones. 2016. “Assessment of the Utility of the Advanced Himawari Imager to Detect Active Fire Over Australia.” ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B8 (June): 65–71. doi:10.5194/isprsarchives-XLI-B8-65-2016.
  • He, L., and Z. Li. 2012. “Enhancement of a Fire Detection Algorithm by Eliminating Solar Reflection in the Mid-IR Band: Application to AVHRR Data.” International Journal of Remote Sensing 33 (22): 7047–7059. Taylor & Francis. doi:10.1080/2150704X.2012.699202.
  • Hu, X., Y. Ban, and A. Nascetti. 2021. “Uni-Temporal Multispectral Imagery for Burned Area Mapping with Deep Learning.” Remote Sensing 13: 8. Multidisciplinary Digital Publishing Institute: 1509. doi:10.3390/rs13081509.
  • Hyer, E. J., J. S. Reid, E. M. Prins, J. P. Hoffman, C. C. Schmidt, J. I. Miettinen, and L. Giglio. 2013. “Patterns of Fire Activity Over Indonesia and Malaysia from Polar and Geostationary Satellite Observations.” Atmospheric Research 122 (March): 504–519. doi:10.1016/j.atmosres.2012.06.011.
  • Jang, E., Y. Kang, J. Im, D.W. Lee, J. Yoon, and S.K. Kim. 2019. “Detection and Monitoring of Forest Fires Using Himawari-8 Geostationary Satellite Data in South Korea.” Remote Sensing 11 (3): 271. doi:10.3390/rs11030271.
  • Jeppesen, J. H., R. Hylsberg Jacobsen, F. Inceoglu, and T. Skjødeberg Toftegaard. 2019. “A Cloud Detection Algorithm for Satellite Imagery Based on Deep Learning.” Remote Sensing of Environment 229 (August): 247–259. doi:10.1016/j.rse.2019.03.039.
  • Kalpoma, K. A., and J. Kudoh. 2006. “A New Algorithm for Forest Fire Detection Method with Statistical Analysis Using NOAA AVHRR Images.” International Journal of Remote Sensing 27 (18): 3867–3880. Taylor & Francis. doi:10.1080/01431160600784226.
  • Kaufman, Y. J., C. O. Justice, L. P. Flynn, J. D. Kendall, E. M. Prins, L. Giglio, D. E. Ward, W. Paul Menzel, and A. W. Setzer. 1998. “Potential Global Fire Monitoring from EOS-MODIS.” Journal of Geophysical Research Atmospheres 103 (D24): 32215–32238. doi:10.1029/98JD01644.
  • Kim, G., D.S. Kim, K.W. Park, J. Cho, K.S. Han, and Y.W. Lee. 2014. “Detecting Wildfires with the Korean Geostationary Meteorological Satellite.” Remote Sensing Letters 5 (1): 19–26. Taylor & Francis. doi:10.1080/2150704X.2013.862602.
  • Koltunov, A., S. L. Ustin, and E. M. Prins. 2012. “On Timeliness and Accuracy of Wildfire Detection by the GOES WF-ABBA Algorithm Over California During the 2006 Fire Season.” Remote Sensing of Environment 127 (December): 194–209. doi:10.1016/j.rse.2012.09.001.
  • Koltunov, A., S. L. Ustin, B. Quayle, B. Schwind, V. G. Ambrosia, and W. Li. 2016. “The Development and First Validation of the GOES Early Fire Detection (GOES-EFD) Algorithm.” Remote Sensing of Environment 184 (October): 436–453. doi:10.1016/j.rse.2016.07.021.
  • Li, Z., J. Cihlar, L. Moreau, F. Huang, and B. Lee. 1997. “Monitoring Fire Activities in the Boreal Ecosystem.” Journal of Geophysical Research Atmospheres 102 (D24): 29611–29624. doi:10.1029/97JD01106.
  • Lin, Z., F. Chen, Z. Niu, B. Li, B. Yu, H. Jia, and M. Zhang. 2018. “An Active Fire Detection Algorithm Based on Multi-Temporal FengYun-3C VIRR Data.” Remote Sensing of Environment 211 (June): 376–387. doi:10.1016/j.rse.2018.04.027.
  • Liu, X. He, B. Quan, X. Yebra, M. Qiu, S. Yin, C. Liao Z and Zhang H. 2018. “Near Real-Time Extracting Wildfire Spread Rate from Himawari-8 Satellite Data.“ Remote Sensing 10 (10): 1654. doi:10.3390/rs10101654.
  • Na, L., J. Zhang, Y. Bao, Y. Bao, R. Na, S. Tong, and A. Si. 2018. “Himawari-8 Satellite Based Dynamic Monitoring of Grassland Fire in China-Mongolia Border Regions.” Sensors 18: 276. Multidisciplinary Digital Publishing Institute. doi:10.3390/s18010276.
  • Polivka, T. N., J. Wang, L. T. Ellison, E. J. Hyer, and C. M. Ichoku. 2016. “Improving Nocturnal Fire Detection with the VIIRS Day–Night Band.” IEEE Transactions on Geoscience and Remote Sensing 54 (9): 5503–5519. doi:10.1109/TGRS.2016.2566665.
  • Prata, A. J. 1989. “Observations of Volcanic Ash Clouds in the 10-12 Μm Window Using AVHRR/2 Data.” International Journal of Remote Sensing 10: 4–5–761751–761. Taylor & Francis. doi:10.1080/01431168908903916.
  • Roberts, G. J., and M. J. Wooster. 2008. “Fire Detection and Fire Characterization Over Africa Using Meteosat SEVIRI.” IEEE Transactions on Geoscience and Remote Sensing 46 (4): 1200–1218. doi:10.1109/TGRS.2008.915751.
  • Roberts, G., M. J. Wooster, W. Xu, P. H. Freeborn, J. -J. Morcrette, L. Jones, A. Benedetti, H. Jiangping, D. Fisher, and J. W. Kaiser. 2015. “LSA SAF Meteosat FRP Products – Part 2: Evaluation and Demonstration for Use in the Copernicus Atmosphere Monitoring Service (CAMS).” Atmospheric Chemistry and Physics 15 (22): 13241–13267. doi:10.5194/acp-15-13241-2015.
  • Roy, D. P., L. Boschetti, C. O. Justice, and J. Ju. 2008. “The Collection 5 MODIS Burned Area Product — Global Evaluation by Comparison with the MODIS Active Fire Product.” Remote Sensing of Environment 112 (9): 3690–3707. doi:10.1016/j.rse.2008.05.013.
  • Schroeder, W., P. Oliva, L. Giglio, and I. A. Csiszar. 2014. “The New VIIRS 375m Active Fire Detection Data Product: Algorithm Description and Initial Assessment.” Remote Sensing of Environment 143 (March): 85–96. doi:10.1016/j.rse.2013.12.008.
  • Schroeder, W., P. Oliva, L. Giglio, B. Quayle, E. Lorenz, and F. Morelli. 2016. “Active Fire Detection Using Landsat-8/OLI Data.” Remote Sensing of Environment 185 (November): 210–220. doi:10.1016/j.rse.2015.08.032.
  • Sifakis, N. I., C. Iossifidis, C. Kontoes, and I. Keramitsoglou. 2011. “Wildfire Detection and Tracking Over Greece Using Msg‑seviri Satellite Data.” Remote Sensing 3 (3): 524–538. Molecular Diversity Preservation International. doi:10.3390/rs3030524.
  • Stroppiana, D., S. Pinnock, and J. -M. Gregoire. 2000. “The Global Fire Product: Daily Fire Occurrence from April 1992 to December 1993 Derived from NOAA AVHRR Data.” International Journal of Remote Sensing 21 (6–7): 1279–1288. doi:10.1080/014311600210173.
  • Vermote, E., and N. Saleous 2007. “LEDAPS Surface Reflectance Product Description.” http://www.gisagmaps.com/storage/SR_productdescript_dec06.pdf.
  • Waigl, C. F., M. Stuefer, A. Prakash, and C. Ichoku. 2017. “Detecting High and Low-Intensity Fires in Alaska Using VIIRS I-Band Data: An Improved Operational Approach for High Latitudes.” Remote Sensing of Environment 199 (September): 389–400. doi:10.1016/j.rse.2017.07.003.
  • Wickramasinghe C, Jones S, Reinke K and Wallace L. 2016.“Development of a Multi-Spatial Resolution Approach to the Surveillance of Active Fire Lines Using Himawari-8.“ Remote Sensing 8 (11): 932. doi: 10.3390/rs8110932.
  • Xie, F., M. Shi, Z. Shi, J. Yin, and D. Zhao. 2017. “Multilevel Cloud Detection in Remote Sensing Images Based on Deep Learning.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10 (8): 3631–3640. doi:10.1109/JSTARS.2017.2686488.
  • Xie, Z., W. Song, R. Ba, X. Li, and L. Xia. 2018. “A Spatiotemporal Contextual Model for Forest Fire Detection Using Himawari-8 Satellite Data.” Remote Sensing 10 (12): 1992. doi:10.3390/rs10121992.
  • Xu, W., M. J. Wooster, T. Kaneko, J. He, T. Zhang, and D. Fisher. 2017. “Major Advances in Geostationary Fire Radiative Power (FRP) Retrieval Over Asia and Australia Stemming from Use of Himarawi-8 AHI.” Remote Sensing of Environment 193 (May): 138–149. doi:10.1016/j.rse.2017.02.024.
  • Xu, W., M. J. Wooster, G. Roberts, and P. Freeborn. 2010. “New GOES Imager Algorithms for Cloud and Active Fire Detection and Fire Radiative Power Assessment Across North, South and Central America.” Remote Sensing of Environment 114 (9): 1876–1895. doi:10.1016/j.rse.2010.03.012.
  • Xu, G., and X. Zhong. 2017. “Real-Time Wildfire Detection and Tracking in Australia Using Geostationary Satellite: Himawari-8.” Remote Sensing Letters 8 (11): 1052–1061. doi:10.1080/2150704X.2017.1350303.
  • Zhang, Q., L. Ge, R. Zhang, G. Isabel Metternicht, Z. Du, J. Kuang, and M. Xu. 2021. “Deep-Learning-Based Burned Area Mapping Using the Synergy of Sentinel-1&2 Data.” Remote Sensing of Environment 264 (October): 112575. doi:10.1016/j.rse.2021.112575.
  • Zhou, S., S. Collier, D. A. Jaffe, N. L. Briggs, J. Hee, A. J. Sedlacek III, L. Kleinman, T. B. Onasch, and Q. Zhang. 2016. Regional Influence of Wildfires on Aerosol Chemistry in the Western US and Insights into Atmospheric Aging of Biomass Burning Organic Aerosol. Preprint. Aerosols/Field Measurements/Troposphere/Chemistry (chemical composition and reactions). doi:10.5194/acp-2016-823.
  • Zhu, Z., and C. E. Woodcock. 2012. “Object-Based Cloud and Cloud Shadow Detection in Landsat Imagery.” Remote Sensing of Environment 118 (March): 83–94. doi:10.1016/j.rse.2011.10.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.