121
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Atmospheric visibility correlates with photon travel time delay from frequency modulated continuous-wave Doppler wind lidar

ORCID Icon, , &
Pages 2982-3004 | Received 21 Dec 2022, Accepted 09 May 2023, Published online: 23 May 2023

References

  • Appel, B. R., Y. Tokiwa, J. Hsu, E. L. Kothny, and E. Hahn. 1985. “Visibility as Related to Atmospheric Aerosol Constituents.” Atmospheric Environment 19 (9): 1525–1534. doi:10.1016/0004-6981(85)90290-2.
  • Brusseau, M. L., A. D. Matthias, A. C. Comrie, and S. A. Musil. 2019. “Atmospheric Pollution”. In Environmental and Pollution Science. 3. edVol. 17, 293–309. Academic Press. doi:10.1016/B978-0-12-814719-1.00017-3.
  • Bufton, J. L., and R. S. Iyer. 1978. “Continuous Wave Lidar Measurement of Atmospheric Visibility.” Applied Optics 17: 265. doi:10.1364/ao.17.000265.
  • Cambell Scientific CS125. 2016. “Instruction manualCs120a and CS125 Visibility and Present Weather Sensors Manual”. Accessed 21 March 2023. https://s.campbellsci.com/documents/ca/manuals/cs120a-cs125_man.pdf.
  • Crosby, J. D. 2003. “Visibility Sensor Accuracy: What’s Realistic.” In 12th Sympsium on Meterological Observations and Instrumentation Long Beach, CA, USA, Long Beach, CA, USA, 9–13.
  • Curcio, J. A., and G. L. Knestrick. 1958. ““Correlation of Atmospheric Transmission with Backscattering.” Journal of the Optical Society of America 48 (10): 686. doi:10.1364/josa.48.000686.1958.
  • Dabberdt, W. F., and S. L. Eigsti. 1981. “Regional Visibility Modeling for the Eastern United States.” Atmospheric Environment 15 (10–11): 2055–2061. doi:10.1016/0004-6981(81)90238-9.
  • Fenn, R. W. 1966. “Correlation Between Atmospheric Backscattering and Meteorological Visual Range.” Applied Optics 5 (2): 293–295. doi:10.1364/AO.5.000293.1966.
  • Ferrare, R. A., S. H. Melfi, D. N. Whiteman, K. D. Evans, M. Poellot, and Y. J. Kaufman. 1998. “Raman Lidar Measurements of Aerosol Extinction and Backscattering: 2. Derivation of Aerosol Real Refractive Index, Single-Scattering Albedo, and Humidification Factor Using Raman Lidar and Aircraft Size Distribution Measurements.” Journal of Geophysical Research 103 (D16): 19673 19689. doi:10.1029/98JD01647.
  • Frehlich, R. G. 1993. “Optimal Local Oscillator Field for a Monostatic Coherent Laser Radar with a Circular Aperture.” Applied Optics 32 (24): 4569–4577. doi:10.1364/AO.32.004569.
  • Hänel, G. 1976. “The Single-Scattering Albedo of Atmospheric Aerosol Particles as a Function of Relative Humidity.” Journal of the Atmospheric Sciences 33 (6): 1120–1124. doi:10.1175/1520-0469(1976)033<1120:TSSAOA>2.0.CO;2.
  • Harris, M., G. Constant, and C. Ward. 2001. “Continuous-Wave Bistatic Laser Doppler Wind Sensor.” Applied Optics 40 (9): 1501–1506. doi:10.1364/AO.40.001501.
  • Hongda, T., K. Xiaohua, Z. Zibo, and S. Dongsong. 2016. “Performance of Backscatter Visibility Lidar at UYN Airport.” Selected Papers of the Chinese Society for Optical Engineering Conferences. Proc. SPIE 10255 102552W. doi:10.1117/12.2264816.
  • Hughes, H. G., J. A. Ferguson, and D. H. Stephens. 1985. “Sensitivity of a Lidar Inversion Algorithm to Parameters Relating Atmospheric Backscatter and Extinction.” Applied Optics 24 (11): 1609. doi:10.1364/AO.24.001609.
  • Hu, L., and H. Hao Yang. 2021. “Monitoring and Analysis of Sea Fog in an Offshore Waterway Using Lidar.” Optical Engineering 60 (06): 064103. doi:10.1117/1.OE.60.6.064103.
  • Jones, D. W., M. Ouldridge, and W. R. Sparks. 1990. “The First WMO Intercomparison of Visibility Measurements: Final Report.” World Meteorological Organisation. Accessed 27 November 2022. https://library.wmo.int/index.php?lvl=notice_display&id=11248#.Yh99aejP2Uk (last accessed: 2/3/2022).
  • Karlsson, C. J., F. Å. A. Olsson, D. Letalick, and M. Harris. 2000. “All-Fiber Multifunction Continuous-Wave Coherent Laser Radar at 155 Μm for Range, Speed, Vibration, and Wind Measurements.” Applied Optics 39 (21): 3716–3726. doi:10.1364/AO.39.003716.
  • Kelberlau, F., and J. Mann. 2020. “Cross-Contamination Effect on Turbulence Spectra from Doppler Beam Swinging Wind Lidar.” Wind Energy Science 5 (2): 519–541. doi:10.5194/wes-5-519-2020.
  • Kreid, D. K. 1976. “Atmospheric Visibility Measurement by a Modulated Cw Lidar.” Applied Optics 15 (7): 1823. doi:10.1364/ao.15.001823.
  • Meng, L., C. Pedersen, and P. J. Rodrigo. 2021. “CW Direct Detection Lidar with a Large Dynamic Range of Wind Speed Sensing in a Remote and Spatially Confined Volume.” Remote Sensing 13 (18): 3716. doi:10.3390/rs13183716.
  • Middleton, W. E. K. 1947. Visibility in Meteorology: The Theory and Practice of the Measurement of the Visual Range. Toronto, Canada: University of Toronto Press.
  • Nebuloni, R. 2005. “Empirical Relationships Between Extinction Coefficient and Visibility in Fog.” Applied Optics 44 (18): 3795–3804. doi:10.1364/ao.44.003795.2005.
  • Pantazis, A., A. Papayannis, and G. Georgousis. 2017. “Lidar Algorithms for Atmospheric Slant Range Visibility, Meteorological Conditions Detection, and Atmospheric Layering Measurements.” Applied Optics 56 (23): 6440–6449. doi:10.1364/AO.56.006440.
  • Peña, A., C. B. Hasager, M. Badger, R. J. Barthelmie, F. Bingöl, J. -P. Cariou, S. Emeis, et al. 2015. “Remote Sensing for Wind Energy Peña, Alfredo, Hasager, Charlotte, C. B. Peña, A., & Hasager, C. B. ” In DTU-Wind Energy Report-E-0084. Vol. 5. Roskilde, Denmark: DTU Wind Energy Department 46–64.
  • Pierrottet, D., F. Amzajerdian, L. Petway, B. Barnes, G. Lockard, and M. Rubio. 2008. “Linear FMCW Laser Radar for Precision Range and Vector Velocity Measurements.” MRS Proceedings 1076. doi:10.1557/PROC-1076-K04-06.
  • Queißer, M., M. Harris, and S. Knoop. 2022. “Atmospheric Visibility Inferred from Continuous-Wave Doppler Wind Lidar.” Atmospheric Measurement Techniques 15 (18): 5527–5544. doi:10.5194/amt-15-5527-2022.
  • Ramanathan, V., F. Li, M. V. Ramana, P. S. Praveen, D. Kim, C. E. Corrigan, H. Nguyen, et al. 2007. “Atmospheric Brown Clouds: Hemispherical and Regional Variations in Long-Range Transport, Absorption, and Radiative Forcing.” Journal of Geophysical Research 112 (D22): D22S21. doi:10.1029/2006JD008124.
  • Sati, A., and M. Mohan. 2014. “Analysis of Air Pollution During a Severe Smog Episode of November 2012 and the Diwali Festival Over Delhi, India.” International Journal of Remote Sensing 35 (19): 6940–6954. doi:10.1080/01431161.2014.960618.
  • Saunders, W. K. 1990. “CW and FM RADAR.”Vol. 14 Radar Handbook. In 2. M. I. Skolnik, 14–18. Accessed 27 November 2022. http://www.ww.helitavia.com/skolnik/Skolnik_chapter_14.pdf
  • Schappert, G. T. 1971. “Technique for Measuring Visibility.” Applied Optics 10 (10): 2325. doi:10.1364/ao.10.002325.
  • Shang, X., H. Xia, X. Dou, M. Shangguan, M. Li, C. Wang, J. Qiu, L. Zhao, and S. Lin. 2017. “Adaptive Inversion Algorithm for 1.5 Um Visibility Lidar Incorporating in situ Angstrom Wavelength Exponent.” Optics Communications 418: 129–134. doi:10.1016/j.optcom.2018.03.009.
  • Smith, D. A., M. Harris, A. S. Coffey, T. Mikkelsen, H. E. Jørgensen, J. Mann, and R. Danielian. 2006. “Wind Lidar Evaluation at the Danish Wind Test Site in Høvsøre.” Wind Energy 9: 87–93. doi:10.1002/we.193.
  • Strauch, R. G., W. C. Campbell, R. B. Chadwick, and K. P. Moran. 1976. “Microwave FM-CW Doppler Radar for Boundary Layer Probing.” Geophysical Research Letters 3 (3): 193–196. doi:10.1029/gl003i003p00193.
  • Twomey, S., and H. B. Howell. 1965. “The Relative Merit of White and Monochromatic Light for the Determination of Visibility by Backscattering Measurements.” Applied Optics 4 (4): 501–506. doi:10.1364/AO.4.000501.
  • Van der Hoven, I. 1957 “Power Spectrum of Horizontal Wind Speed in the Frequency Range from 0.0007 to 900 Cycles per Hour.” Journal of Meteorological 14 (160): 164. doi:10.1175/1520-0469(1957)014<0160:PSOHWS>2.0.CO;2.
  • Werner, C., J. Streicher, I. Leike, and C. Münkel. 2005. “Visibility and Cloud Lidar.” In Lidar. Springer Series in Optical Sciences, C. Weitkamp edited by, Vol. 102. New York, NY: Springer. doi:10.1007/0-387-25101-4_6.
  • White, W. H. 1976. “Reduction of Visibility by Sulphates in Photochemical Smog.” Nature 264 (5588): 735–736. doi:10.1038/264735a0.
  • Wiegner, M., J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, et al. 2009. “Numerical Simulations of Optical Properties of Saharan Dust Aerosols with Emphasis on Lidar Applications.” Tellus Series B Chemical and Physical Meteorology 61 (1): 180–194. doi:10.1111/j.1600-0889.2008.00381.x.
  • Wilcox, E. M., R. M. Thomas, P. S. Praveen, K. Pistone, F.A. -M. Bender, and V. Ramanathan. 2016. “Black Carbon Solar Absorption Suppresses Turbulence in the Atmospheric Boundary Layer.” PNAS 113 (42): 11794–11799. doi:10.1073/pnas.1525746113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.