303
Views
0
CrossRef citations to date
0
Altmetric
Review Article

GNSS ground-based tomography: state-of-the-art and technological challenges

ORCID Icon & ORCID Icon
Pages 5313-5343 | Received 07 Apr 2023, Accepted 03 Aug 2023, Published online: 04 Sep 2023

References

  • Abdelfatah, M. A. 2023. “Improving the Performance of Tropospheric Mapping Function in Low Elevation Angle Using Artificial Neural Network.” The Egyptian Journal of Remote Sensing & Space Science 26 (1): 129–139. https://doi.org/10.1016/j.ejrs.2022.12.011.
  • Adavi, Z., and M. Mashhadi-Hossainali. 2014. “4D Tomographic Reconstruction of the Tropospheric Wet Refractivity Using the Concept of Virtual Reference Station, Case Study: Northwest of Iran.” Meteorology and Atmospheric Physics 126 (3–4): 193–205. https://doi.org/10.1007/s00703-014-0342-4.
  • Adavi, Z., W. Rohm, and R. Weber. 2020. “Analyzing Different Parameterization Methods in GNSS Tomography Using the COST Benchmark Dataset.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 13:6155–6163. https://doi.org/10.1109/JSTARS.2020.3027909.
  • Ağbulut, Ü., A. Etem Gürel, and Y. Biçen. 2021. “Prediction of Daily Global Solar Radiation Using Different Machine Learning Algorithms: Evaluation and Comparison.” Renewable and Sustainable Energy Reviews 135:110114. https://doi.org/10.1016/j.rser.2020.110114.
  • Aghajany, S. H., and Y. Amerian. 2017. “Three Dimensional Ray Tracing Technique for Tropospheric Water Vapor Tomography Using GPS Measurements.” Journal of Atmospheric and Solar-Terrestrial Physics 164:81–88. https://doi.org/10.1016/j.jastp.2017.08.003.
  • Ahmed, F., F. N. Teferle, R. M. Bingley, and D. Laurichesse. 2016. “The Status of GNSS Data Processing Systems to Estimate Integrated Water Vapour for Use in Numerical Weather Prediction Models.” In IAG 150 Years: Proceedings of the IAG Scientific Assembly in Postdam, Germany, 2013, 587–593. Springer.
  • Amanatides, J., and A. Woo. 1987. “A fast voxel traversal algorithm for ray tracing.” Eurographics 87 (3): 3–10.
  • Aranzulla, M., C. Spinetti, F. Cannavò, V. Romaniello, F. Guglielmino, G. Puglisi, and P. Briole. 2021. “Water Vapor Tomography of the Lower Atmosphere from Multiparametric Inversion: The Mt. Etna Volcano Test Case.” Frontiers in Earth Science 8:510514. https://doi.org/10.3389/feart.2020.510514.
  • Barindelli, S., E. Realini, G. Venuti, A. Fermi, and A. Gatti. 2018. “Detection of Water Vapor Time Variations Associated with Heavy Rain in Northern Italy by Geodetic and Low-Cost GNSS Receivers.” Earth, Planets and Space 70 (1): 1–18. https://doi.org/10.1186/s40623-018-0795-7.
  • Bender, M., G. Dick, M. Ge, Z. Deng, J. Wickert, H.-G. Kahle, A. Raabe, and G. Tetzlaff. 2011. “Development of a GNSS Water Vapour Tomography System Using Algebraic Reconstruction Techniques.” Advances in Space Research 47 (10): 1704–1720. https://doi.org/10.1016/j.asr.2010.05.034.
  • Bender, M, and A Raabe. 2007. Preconditions to ground based GPS water vapour tomography. Annales geophysicae 25 (8): 1727–1734. https://doi.org/10.5194/angeo-25-1727-2007.
  • Bender, M., R. Stosius, F. Zus, Galina Dick, J. Wickert, and A. Raabe. 2011. “GNSS Water Vapour Tomography – Expected Improvements by Combining GPS, GLONASS and Galileo Observations.” Advances in Space Research 47 (5): 886–897. https://doi.org/10.1016/j.asr.2010.09.011.
  • Benevides, P., J. Catalão, and P. Miranda. 2014. “Estudio experimental de tomografía GNSS en Lisboa (Portugal).” Fís. Tierra 26 (0). https://doi.org/10.5209/rev_FITE.2014.v26.46972.
  • Benevides, P., J. Catalao, and G. Nico. 2019. “Neural Network Approach to Forecast Hourly Intense Rainfall Using GNSS Precipitable Water Vapor and Meteorological Sensors.” Remote Sensing 11 (8): 966. https://doi.org/10.3390/rs11080966.
  • Benevides, P., J. Catalao, G. Nico, and P. M. Miranda. 2015. “Inclusion of high resolution MODIS maps on a 3D tropospheric water vapor GPS tomography model.“ SPIE Remote Sensing, Toulouse, France, 16 october 2015, 187–199. SPIE. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9640/96400R/Inclusion-of-high-resolution-MODIS-maps-on-a-3D-tropospheric/10.1117/12.2194857.short?SSO=1
  • Benevides, P., J. Catalao, G. Nico, and P. M. Miranda. 2018. “4D Wet Refractivity Estimation in the Atmosphere Using GNSS Tomography Initialized by Radiosonde and AIRS Measurements: Results from a 1-Week Intensive Campaign.” GPS Solutions 22 (4): 91. https://doi.org/10.1007/s10291-018-0755-5.
  • Benevides, P., G. Nico, J. Catalão, and P. M. Miranda. 2016. “Analysis of Galileo and GPS Integration for GNSS Tomography.” IEEE Transactions on Geoscience and Remote Sensing 55 (4): 1936–1943. https://doi.org/10.1109/TGRS.2016.2631449.
  • Benning, M., and M. Burger. 2018. “Modern Regularization Methods for Inverse Problems.” Acta numerica 27:1–111. https://doi.org/10.1017/S0962492918000016.
  • Beutler, G., H. Bock, E. Brockmann, R. Dach, P. Fridez, W. Gurtner, U. Hugentobler, et al. 2001. “Bernese GPS SOftware Version 4.2, 515. Astronomical Institute, University of Berne. http://ftp.aiub.unibe.ch/BERN40/DOCU/doc40_01.pdf.
  • Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware. 1992. “GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System.” Journal of Geophysical Research-Atmospheres 97 (D14): 15787–15801. https://doi.org/10.1029/92JD01517.
  • Born, M., and E. Wolf. 2000. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge: Cambridge Univ. Press.
  • Braun, J., and C. Rocken. 2003. “Water Vapor Tomography within the Planetary Boundary Layer Using GPS.” In International Workshop on GPS Meteorology, 14–17. Tsukuba, Japan: Citeseer.
  • Brenot, H., W. Rohm, M. Kačmařk, G. Möller, A. Sá, D. Tondaś, L. Rapant, R. Biondi, T. Manning, and C. Champollion. 2019. “Cross-Comparison and Methodological Improvement in GPS Tomography.” Remote Sensing 12 (1): 30. https://doi.org/10.3390/rs12010030.
  • Champollion, C., F. Masson, M.-N. Bouin, A. Walpersdorf, E. Doerflinger, O. Bock, and J. Van Baelen. 2005. “GPS Water Vapour Tomography: Preliminary Results from the ESCOMPTE Field Experiment.” Atmospheric Research 74 (1–4): 253–274. https://doi.org/10.1016/j.atmosres.2004.04.003.
  • Chen, B., and Z. Liu. 2014. “Voxel-Optimized Regional Water Vapor Tomography and Comparison with Radiosonde and Numerical Weather Model.” Journal of Geodesy 88 (7): 691–703. https://doi.org/10.1007/s00190-014-0715-y.
  • Chen, B., and Z. Liu. 2016. “Assessing the Performance of Troposphere Tomographic Modeling Using Multi-Source Water Vapor Data During Hong Kong’s Rainy Season from May to October 2013.” Atmospheric Measurement Techniques 9 (10): 5249–5263. https://doi.org/10.5194/amt-9-5249-2016.
  • Chen, B., Z. Liu, W.-K. Wong, and W.-C. Woo. 2017. “Detecting Water Vapor Variability During Heavy Precipitation Events in Hong Kong Using the GPS Tomographic Technique.” Journal of Atmospheric and Oceanic Technology 34 (5): 1001–1019. https://doi.org/10.1175/JTECH-D-16-0115.1.
  • Ding, N., S. B. Zhang, S. Q. Wu, X. M. Wang, and K. F. Zhang. 2018. “Adaptive Node Parameterization for Dynamic Determination of Boundaries and Nodes of GNSS Tomographic Models.” Journal of Geophysical Research: Atmospheres 123 (4): 1990–2003. https://doi.org/10.1002/2017JD027748.
  • Ding, N., S. Zhang, and Q. Zhang. 2017. “New Parameterized Model for GPS Water Vapor Tomography.” Annales Geophysicae 35 (2): 311–323.
  • Dong, Z., and S. Jin. 2018. “3-D Water Vapor Tomography in Wuhan from GPS, BDS and GLONASS Observations.” Remote Sensing 10 (1): 62. https://doi.org/10.3390/rs10010062.
  • Duan, J., M. Bevis, P. Fang, Y. Bock, S. Chiswell, S. Businger, C. Rocken, et al. 1996. “GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water.” Journal of Applied Meteorology & Climatology 35 (6): 830–838. https://doi.org/10.1175/1520-0450(1996)035<0830:GMDEOT>2.0.CO;2.
  • Eroglu, E. 2021. “Analysis of the First Four Moderate Geomagnetic Storms of the Year 2015.” Arabian Journal of Geosciences 14 (23): 1–17. https://doi.org/10.1007/s12517-021-08816-3.
  • Feizi, R., B. Voosoghi, and Mir Reza Ghaffari Razin. 2020. “Regional Modeling of the Ionosphere Using Adaptive Neuro-Fuzzy Inference System in Iran.” Advances in Space Research 65 (11): 2515–2528. https://doi.org/10.1016/j.asr.2020.02.027.
  • Flores Jiménez, A. 2000. Atmospheric Tomography Using Satellite Radio Signals. : Universitat Politècnica de Catalunya.
  • Flores, A., G. Ruffini, and A. Rius. 2000. “4D Tropospheric Tomography Using GPS Slant Wet Delays.” Annales Geophysicae 18 (2): 223–234.
  • Geetha, A., J. Santhakumar, K. M. Sundaram, S. Usha, T. M. Thamizh Thentral, C. S. Boopathi, R. Ramya, and R. Sathyamurthy. 2022. “Prediction of Hourly Solar Radiation in Tamil Nadu Using ANN Model with Different Learning Algorithms.” Energy Reports 8: 664–671. https://doi.org/10.1016/j.egyr.2021.11.190.
  • Ghaffari Razin, M.-R., and S. Inyurt. 2022. “Spatiotemporal Analysis of Precipitable Water Vapor Using ANFIS and Comparison Against Voxel-Based Tomography and Radiosonde.” GPS Solutions 26: 1–13. https://doi.org/10.1007/s10291-021-01184-1.
  • Ghaffari-Razin, S. R., Reza Davari Majd, and N. Hooshangi. 2023. “Regional Modeling and Forecasting of Precipitable Water Vapor Using Least Square Support Vector Regression.” Advances in Space Research 71 (11): 4725–4738. https://doi.org/10.1016/j.asr.2023.01.030.
  • Gradinarsky, L. P., and P. Jarlemark. 2004. “Ground-Based GPS Tomography of Water Vapor: Analysis of Simulated and Real Data.” Journal of the Meteorological Society of Japan Ser. II 82 (1B): 551–560. https://doi.org/10.2151/jmsj.2004.551.
  • Guerova, G., J. Jones, J. Douša, G. Dick, S. de Haan, E. Pottiaux, O. Bock, et al. 2016. “Review of the State of the Art and Future Prospects of the Ground-Based GNSS Meteorology in Europe.” Atmospheric Measurement Techniques 9 (11): 5385–5406. https://doi.org/10.5194/amt-9-5385-2016.
  • Guo, Q., X. Wu, and W. Sang. 2018. “Review of the Research Status and Progress of Ground-Based GNSS Meteorology.” In Proceedings of the International Workshop on Environment and Geoscience (IWEG 2018), 199–206.
  • Haji-Aghajany, S., and Y. Amerian. 2018. “Hybrid Regularized GPS Tropospheric Sensing Using 3-D Ray Tracing Technique.” IEEE Geoscience and Remote Sensing Letters 15 (10): 1475–1479. https://doi.org/10.1109/LGRS.2018.2853183.
  • Haji-Aghajany, S., Y. Amerian, and S. Verhagen. 2020. “B-Spline Function-Based Approach for GPS Tropospheric Tomography.” GPS Solutions 24 (3): 88. https://doi.org/10.1007/s10291-020-01005-x.
  • Haji-Aghajany, S., Y. Amerian, S. Verhagen, W. Rohm, and M. Hongyang. 2020. “An Optimal Troposphere Tomography Technique Using the WRF Model Outputs and Topography of the Area.” Remote Sensing 12 (9): 1442. https://doi.org/10.3390/rs12091442.
  • Haji-Aghajany, S., Y. Amerian, S. Verhagen, W. Rohm, and H. Schuh. 2021. “The Effect of Function-Based and Voxel-Based Tropospheric Tomography Techniques on the GNSS Positioning Accuracy.” Journal of Geodesy 95 (7): 78. https://doi.org/10.1007/s00190-021-01528-2.
  • Hanna, N., E. Trzcina, G. Möller, W. Rohm, and R. Weber. 2019. “Assimilation of GNSS Tomography Products into the Weather Research and Forecasting Model Using Radio Occultation Data Assimilation Operator.” Atmospheric Measurement Techniques 12 (9): 4829–4848. https://doi.org/10.5194/amt-12-4829-2019.
  • Heng, H., M. Liu, J. Zhong, X. Deng, Y. Cao, and P. Fang. 2021. “A Case Study of the 3D Water Vapor Tomography Model Based on a Fast Voxel Traversal Algorithm for Ray Tracing.” Remote Sensing 13 (12): 2422. https://doi.org/10.3390/rs13122422.
  • Heublein, M., X. X. Zhu, F. Alshawaf, M. Mayer, R. Bamler, and S. Hinz. 2015. “Compressive Sensing for Neutrospheric Water Vapor Tomography Using GNSS and InSar Observations.” In 2015 IEEE international geoscience and remote sensing symposi-um (IGARSS), Milan, Italy, 5268–5271. IEEE.
  • Hirahara, K. 2000. “Local GPS Tropospheric Tomography.” Earth, Planets and Space 52 (11): 935–939. https://doi.org/10.1186/BF03352308.
  • Jiang, P., S. R. Ye, Y. Y. Liu, J. J. Zhang, and P. F. Xia. 2014. Near real-time water vapor tomography using ground-based GPS and meteorological data: long-term experiment in Hong Kong. Annales de Geophysique 32 (8): 911–923. https://doi.org/10.5194/angeo-32-911-2014.
  • Kabanikhin, S. I. 2008. “Definitions and Examples of Inverse and Ill-Posed Problems.” Journal of Inverse and Ill-Posed Problems 16 (4). https://doi.org/10.1515/JIIP.2008.019.
  • King, R. W., and Y. Bock. 2004. Documentation for the MIT GPS Analysis Software: GAMIT. Cambridge: Massachusetts Institute of Technology.
  • Konakoglu, B., Funda Kutlu Onay, and Salih Berkan Aydemir. 2023. “Tropospheric Zenith Wet Delay Prediction with a New Hybrid ANN–Gorilla Troops Optimizer Algorithm.” Advances in Space Research 71 (11): 4739–4750. https://doi.org/10.1016/j.asr.2023.01.035.
  • Landskron, D., and J. Böhm. 2018. “VMF3/GPT3: Refined Discrete and Empirical Troposphere Mapping Functions.” Journal of Geodesy 92 (4): 349–360. https://doi.org/10.1007/s00190-017-1066-2.
  • Lehtola, V. V., M. Mäkelä, T. de Oliveira Marques, and L. Montloin. 2022. “Tropospheric Wet Tomography and PPP: Joint Estimation from GNSS Crowdsourcing Data.” Advances in Space Research 70 (8): 2399–2411. https://doi.org/10.1016/j.asr.2022.08.004.
  • Liu, C., Y. Yao, and C. Xu. 2022. “Conventional and Neural Network-Based Water Vapor Density Model for GNSS Troposphere Tomography.” GPS Solutions 26:1–12. https://doi.org/10.1007/s10291-021-01188-x.
  • Lu, C., X. Li, T. Nilsson, T. Ning, R. Heinkelmann, M. Ge, S. Glaser, and H.-A. Schuh. 2015. “Real-Time Retrieval of Precipitable Water Vapor from GPS and BeiDou Observations.” Journal of Geodesy 89 (9): 843–856. https://doi.org/10.1007/s00190-015-0818-0.
  • Manandhar, S. 2019. “GPS signal derived precipitable water vapor and its applications in rainfall prediction.” PhD diss.
  • Menke, W. 1989. Geophysical Data Analysis: Discrete Inverse Theory. Academic press, Elsevier.
  • Mohanakumar, K. 2008. Stratosphere Troposphere Interactions: An Introduction. Springer Science & Business Media. https://doi.org/10.1007/978-1-4020-8217-7.
  • Möller, G., and D. Landskron. 2019. “Atmospheric Bending Effects in GNSS Tomography.” Atmospheric Measurement Techniques 12 (1): 23–34. https://doi.org/10.5194/amt-12-23-2019.
  • Niell, A. E., A. J. Coster, F. S. Solheim, V. B. Mendes, P. C. Toor, R. B. Langley, and C. A. Upham. 2001. “Comparison of Measurements of Atmospheric Wet Delay by Radiosonde, Water Vapor Radiometer, GPS, and VLBI.” Journal of Atmospheric and Oceanic Technology 18 (6): 830–850. https://doi.org/10.1175/1520-0426(2001)018<0830:COMOAW>2.0.CO;2.
  • Nievinski, F. G., and M. C. Santos. 2010. “Ray-Tracing Options to Mitigate the Neutral Atmosphere Delay in GPS.” Geomatica 64 (2): 191–207.
  • Nilsson, T., L. Gradinarsky, and G. Elgered. 2004. “GPS Tomography Using Phase Observations.” In IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20-24 September 2004, 2756–2759. IEEE.
  • Notarpietro, R., M. Cucca, M. Gabella, G. Venuti, and G. Perona. 2011. “Tomographic Reconstruction of Wet and Total Refractivity Fields from GNSS Receiver Networks.” Advances in Space Research 47 (5): 898–912. https://doi.org/10.1016/j.asr.2010.12.025.
  • Pallarés, J. M., G. Ruffini, and L. Ruffini. 2005. “Ionospheric Tomography Using GNSS Reflections.” IEEE Transactions on Geoscience and Remote Sensing 43 (2): 321–326. https://doi.org/10.1109/TGRS.2004.841253.
  • Pedro, B., G. Nico, J. Catalao, and P. M. Miranda. 2015. “Bridging InSar and GPS Tomography: A New Differential Geometrical Constraint.” IEEE Transactions on Geoscience and Remote Sensing 54 (2): 697–702. https://doi.org/10.1109/TGRS.2015.2463263.
  • Perler, D., A. Geiger, and F. Hurter. 2011. “4D GPS Water Vapor Tomography: New Parameterized Approaches.” Journal of Geodesy 85 (8): 539–550. https://doi.org/10.1007/s00190-011-0454-2.
  • Razin, M.-R. G., and B. Voosoghi. 2022. “Modeling of Precipitable Water Vapor from GPS Observations Using Machine Learning and Tomography Methods.” Advances in Space Research 69 (7): 2671–2681. https://doi.org/10.1016/j.asr.2022.01.003.
  • Rocken, C., J. M. Johnson, R. E. Neilan, M. Cerezo, J. R. Jordan, M. J. Falls, L. D. Nelson, R. H. Ware, and M. Hayes. 1991. “The Measurement of Atmospheric Water Vapor: Radiometer Comparison and Spatial Variations.” IEEE Transactions on Geoscience and Remote Sensing 29 (1): 3–8. https://doi.org/10.1109/36.103286.
  • Rocken, C., R. Ware, T. Van Hove, F. Solheim, C. Alber, J. Johnson, M. Bevis, and S. Businger. 1993. “Sensing Atmospheric Water Vapor with the Global Positioning System.” Geophysical Research Letters 20 (23): 2631–2634. https://doi.org/10.1029/93GL02935.
  • Rohm, W. 2013. “The Ground GNSS Tomography–Unconstrained Approach.” Advances in Space Research 51 (3): 501–513. https://doi.org/10.1016/j.asr.2012.09.021.
  • Rohm, W., and J. Bosy. 2011. “The Verification of GNSS Tropospheric Tomography Model in a Mountainous Area.” Advances in Space Research 47 (10): 1721–1730. https://doi.org/10.1016/j.asr.2010.04.017.
  • Rohm, W., K. Zhang, and J. Bosy. 2014. “Limited Constraint, Robust Kalman Filtering for GNSS Troposphere Tomography.” Atmospheric Measurement Techniques 7 (5): 1475–1486. https://doi.org/10.5194/amt-7-1475-2014.
  • Roussel, N., F. Frappart, G. Ramillien, J. Darrozes, C. Desjardins, P. Gegout, F. Pérosanz, and R. Biancale. 2014. “Simulations of Direct and Reflected Wave Trajectories for Ground-Based GNSS-R Experiments.” Geoscientific Model Development 7 (5): 2261–2279. https://doi.org/10.5194/gmd-7-2261-2014.
  • Sá, A., F. Bento, R. Fernandes, and P. Crocker. 2014. Tomographic determination of the spatial Distribution of Water Vapor using GNSS observations. 8ª Asemblea Hispano Portuguesa de Geodesia y Geofisica, 8ª Assembleia Luso Espanhola de Geodesia e Geofísica, Evora, portugal, 2014. https://bdigital.ipg.pt/dspace/bitstream/10314/2420/1/%2bAndre%20S%c3%a1_Temografia%20para%20a%20determina%c3%a7%c3%a3o%20da%20distribui%c3%a7%c3%a3o%20espacial%20do%20vapor%20de%20%c3%a1gua%20atrav%c3%a9s%20de%20observa%c3%a7%c3%b5es%20GNSS.pdf.
  • Selbesoglu, M. O. 2020. “Prediction of Tropospheric Wet Delay by an Artificial Neural Network Model Based on Meteorological and GNSS Data.” Engineering Science & Technology, an International Journal 23 (5): 967–972. https://doi.org/10.1016/j.jestch.2019.11.006.
  • Shafei, M. J., and M. M. Hossainali. 2020. “Application of the GPS Reflected Signals in Tomographic Reconstruction of the Wet Refractivity in Italy.” Journal of Atmospheric and Solar-Terrestrial Physics 207:105348. https://doi.org/10.1016/j.jastp.2020.105348.
  • Shangguan, M. 2014. “Analysis and derivation of spatial and temporal distribution of water vapor from GNSS observations.” PhD diss., Technische Universität Berlin.
  • Shengjie, Y., L. Liu, and X. Liang. 2010. “Influence Analysis of Constraint Conditions on GPS Water Vapor Tomography.” Acta Geodaetica et Cartographica Sinica 39 (5): 490–496.
  • Song, S., W. Zhu, J. Ding, and J. Peng. 2006. “3D Water-Vapor Tomography with Shanghai GPS Network to Improve Forecasted Moisture Field.” Chinese Science Bulletin 51 (5): 607–614. https://doi.org/10.1007/s11434-006-0607-5.
  • Sucharew, H., and M. Macaluso. 2019. “Methods for Research Evidence Synthesis: The Scoping Review Approach.” Journal of Hospital Medicine 14 (7): 416–418. https://doi.org/10.12788/jhm.3248.
  • Tong, L., K. Zhang, H. Li, X. Wang, N. Ding, J. Shi, D. Zhu, and S. Wu. 2022. “An Investigation of Near Real-Time Water Vapor Tomography Modeling Using Multi-Source Data.” Atmosphere 13 (5): 5. https://www.mdpi.com/2073-4433/13/5/752.
  • Troller, M., A. Geiger, E. Brockmann, and H.-G. Kahle. 2006. “Determination of the Spatial and Temporal Variation of Tropospheric Water Vapour Using CGPS Networks.” Geophysical Journal International 167 (2): 509–520. https://doi.org/10.1111/j.1365-246X.2006.03101.x.
  • Trzcina, E., N. Hanna, M. Kryza, and W. Rohm. 2020. “TOMOREF Operator for Assimilation of GNSS Tomography Wet Refractivity Fields in WRF DA System.” Journal of Geophysical Research: Atmospheres 125 (17): e2020JD032451. https://doi.org/10.1029/2020JD032451.
  • Wang, W. 2011. “Ground-Based GPS Water Vapor Tomography Based on Algebraic Reconstruction Technique.” Journal of Computer Applications 31 (11): 3149.
  • Wang, Y., N. Ding, Y. Zhang, L. Li, X. Yang, and Q. Zhao. 2020. “A New Approach of the Global Navigation Satellite System Tomography for Any Size of GNSS Network.” Remote Sensing 12 (4): 617. https://doi.org/10.3390/rs12040617.
  • Wang, J., L. Zhang, A. Dai, F. Immler, M. Sommer, and H. Vömel. 2013. “Radiation Dry Bias Correction of Vaisala RS92 Humidity Data and Its Impacts on Historical Radiosonde Data.” Journal of Atmospheric and Oceanic Technology 30 (2): 197–214. https://doi.org/10.1175/JTECH-D-12-00113.1.
  • Wintoft, P., and M. Wik. 2021. “Exploring Three Recurrent Neural Network Architectures for Geomagnetic Predictions.” Frontiers in Astronomy and Space Sciences 8: 664483. https://doi.org/10.3389/fspas.2021.664483.
  • Xia, P., C. Cai, and Z. Liu. 2013. “GNSS troposphere tomography based on two-step reconstructions using GPS observations and COSMIC profiles.“ Annales Geophysicae 31 (10): 1805–1815. https://doi.org/10.5194/angeo-31-1805-2013.
  • Xia, F., S. Ye, P. Xia, L. Zhao, N. Jiang, D. Chen, and G. Hu. 2019. “Assessing the Latest Performance of Galileo-Only PPP and the Contribution of Galileo to Multi-GNSS PPP.” Advances in Space Research 63 (9): 2784–2795. https://doi.org/10.1016/j.asr.2018.06.008.
  • Xin, W., and L. Daren. 2005. “Retrieval of Water Vapor Profiles with Radio Occultation Measurements Using an Artificial Neural Network.” Advances in Atmospheric Sciences 22 (5): 759–764. https://doi.org/10.1007/BF02918719.
  • Xiong, Z., J. Sang, X. Sun, B. Zhang, and J. Li. 2020. “Comparisons of Performance Using Data Assimilation and Data Fusion Approaches in Acquiring Precipitable Water Vapor: A Case Study of a Western United States of America Area.” Water 12 (10): 2943. https://doi.org/10.3390/w12102943.
  • Yang, F., J. Guo, J. Shi, X. Meng, Y. Zhao, L. Zhou, and D. Zhang. 2020. “A GPS Water Vapour Tomography Method Based on a Genetic Algorithm.” Atmospheric Measurement Techniques 13 (1): 355–371. https://doi.org/10.5194/amt-13-355-2020.
  • Yang, F., J. Guo, J. Shi, Y. Zhao, L. Zhou, and S. Song. 2019. “A New Method of GPS Water Vapor Tomography for Maximizing the Use of Signal Rays.” Applied Sciences 9 (7): 1446. https://doi.org/10.3390/app9071446.
  • Yang, F., J. Guo, J. Shi, L. Zhou, Y. Xu, and M. Chen. 2018. “A Method to Improve the Distribution of Observations in GNSS Water Vapor Tomography.” Sensors 18 (8): 2526. https://doi.org/10.3390/s18082526.
  • Yao, Y., C. Liu, and C. Xu. 2020. “A New GNSS-Derived Water Vapor Tomography Method Based on Optimized Voxel for Large GNSS Network.” Remote Sensing 12 (14): 2306. https://doi.org/10.3390/rs12142306.
  • Yao, Y., and Q. Zhao. 2017. “A Novel, Optimized Approach of Voxel Division for Water Vapor Tomography.” Meteorology and Atmospheric Physics 129 (1): 57–70. https://doi.org/10.1007/s00703-016-0450-4.
  • Ye, S., P. Xia, and C. Cai. 2016. “Optimization of GPS water vapor tomography technique with radiosonde and COSMIC historical data.“ Annales Geophysicae 34: 789–799. https://doi.org/10.5194/angeo-34-789-2016.
  • Zhang, B., Q. Fan, Y. Yao, C. Xu, and X. Li. 2017. An Improved Tomography Approach Based on Adaptive Smoothing and Ground Meteorological Observations. Remote Sensing 9 (9): 886. https://doi.org/10.3390/rs9090886.
  • Zhang, Z., S. Pan, C. Gao, T. Zhao, and W. Gao. 2019. “Support Vector Machine for Regional Ionospheric Delay Modeling.” Sensors 19 (13): 2947. https://doi.org/10.3390/s19132947.
  • Zhang, B., and Y. Yao. 2021. “Precipitable Water Vapor Fusion Based on a Generalized Regression Neural Network.” Journal of Geodesy 95 (3): 36. https://doi.org/10.1007/s00190-021-01482-z.
  • Zhang, B., Y. Yao, L. Xin, and X. Xu. 2019. “Precipitable Water Vapor Fusion: An Approach Based on Spherical Cap Harmonic Analysis and Helmert Variance Component Estimation.” Journal of Geodesy 93 (12): 2605–2620. https://doi.org/10.1007/s00190-019-01322-1.
  • Zhang, W., S. Zhang, N. Ding, L. Holden, X. Wang, and N. Zheng. 2021. “GNSS-RS Tomography: Retrieval of Tropospheric Water Vapor Fields Using GNSS and RS Observations.” IEEE Transactions on Geoscience and Remote Sensing 60:1–13. https://doi.org/10.1109/TGRS.2021.3077083.
  • Zhang, W., S. Zhang, N. Ding, and Q. Zhao. 2020. “A Tropospheric Tomography Method with a Novel Height Factor Model Including Two Parts: Isotropic and Anisotropic Height Factors.” Remote Sensing 12 (11): 1848. https://doi.org/10.3390/rs12111848.
  • Zhao, Q., P. Yang, W. Yao, and Y.-B. Yao. 2019. “Hourly PWV Dataset Derived from GNSS Observations in China.” Sensors 20 (1): 231. https://doi.org/10.3390/s20010231.
  • Zhao, Q., and Y. Yao. 2017. “An improved troposphere tomographic approach considering the signals coming from the side face of the tomographic area.“ Annales Geophysicae 35 (1): 87–95. https://doi.org/10.5194/angeo-35-87-2017.
  • Zhao, Q., Y. Yao, and C. Xu. 2016. “The Research on Four-Dimensional Water Vapor Tomography Based on Real-Time PPP Technique.” In China Satellite Navigation Conference (CSNC) 2016 Proceedings: Volume I, Singapore, 3–14. Springer.
  • Zhao, Q., W. Yao, Y. Yao, and X. Li. 2020. “An Improved GNSS Tropospheric Tomography Method with the GPT2w Model.” GPS Solutions 24:1–13. https://doi.org/10.1007/s10291-020-0974-4.
  • Zhao, Q., Y. Yao, W. Yao, and P. Xia. 2018. “An optimal tropospheric tomography approach with the support of an auxiliary area.” Annales Geophysicae 36 (4): 1037–1046. https://doi.org/10.5194/angeo-36-1037-2018.
  • Zhao, Q., K. Zhang, and W. Yao. 2019. “Influence of station density and multi-constellation GNSS observations on troposphere tomography.” Annales Geophysicae 37 (1): 15–24. https://doi.org/10.5194/angeo-37-15-2019.
  • Zhao, Q., K. Zhang, Y. Yao, and X. Li. 2019. “A New Troposphere Tomography Algorithm with a Truncation Factor Model (TFM) for GNSS Networks.” GPS Solutions 23:1–13. https://doi.org/10.1007/s10291-019-0855-x.
  • Zheng, D. Y., W. S. Hu, J. Wang, and M. C. Zhu. 2015. “Research on Regional Zenith Tropospheric Delay Based on Neural Network Technology.” Survey Review 47 (343): 286–295. https://doi.org/10.1179/1752270614Y.0000000130.
  • Zumberge, J. F., M. B. Heflin, D. C. Jefferson, M. M. Watkins, and F. H. Webb. 1997. “Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks.” Journal of Geophysical Research: Solid Earth 102 (B3): 5005–5017. https://doi.org/10.1029/96JB03860.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.