122
Views
0
CrossRef citations to date
0
Altmetric
Research article

Retrieval of high-precision precipitable water vapour maps using Sentinel-1A and Beidou satellite data

, , , , &
Pages 7085-7105 | Received 12 Mar 2023, Accepted 29 Oct 2023, Published online: 21 Nov 2023

References

  • Ashutosh, T., D. Ramji, D. Onkar, and K. S. Ajai. 2016. “A Study on Measuring Surface Deformation of the L’Aquila Region Using the StaMps Technique.” International Journal of Remote Sensing 37 (4): 819–830. https://doi.org/10.1080/01431161.2015.1136449.
  • Benevides, P., G. Nico, J. C. Fernandes, and P. M. Miranda. 2016. “Bridging InSar and GPS Tomography: A New Differential Geometrical Constraint.” IEEE Transactions on Geoscience and Remote Sensing 54 (2): 697–702. https://doi.org/10.1109/TGRS.2015.2463263.
  • Bevis, M., S. Chiswell, S. Businger, T. A. Herring, and Y. Bock. 1996. “Estimating Wet Delays Using Numerical Weather Analyses and Predictions.” Radio Science 31 (3): 477–487. https://doi.org/10.1029/96RS00008.
  • Chen, B. Y., and Z. Z. Liu. 2016. “Global Water Vapor Variability and Trend from the Latest 36 Years (1979 to 2014) Data of ECMWF and NCEP Reanalysis, Radiosonde, GPS, and Microwave Satellite.” Journal of Geophysical Research: Atmospheres 121 (19): 11442–11462. https://doi.org/10.1002/2016JD024917.
  • Duan, M., B. Xu, Z. W. Li, Y. M. Cao, J. Hu, W. B. Xu, J. C. Wei, and G. C. Feng. 2020. “Non-Differential Water Vapor Estimation from SBAS-Insar.” Journal of Atmospheric and Solar-Terrestrial Physics 204:105284–105293. https://doi.org/10.1016/j.jastp.2020.105284.
  • Fadhillah, M. F., A. R. Achmad, and C. W. Lee. 2020. “Integration of InSar Time-Series Data and GIS to Assess Land Subsidence Along Subway Lines in the Seoul Metropolitan Area, South Korea.” Remote Sensing 12 (21): 3505–3529. https://doi.org/10.3390/rs12213505.
  • Fadwa, A., H. Stefan, M. Michael, and J. M. Franz. 2015. “Constructing Accurate Maps of Atmospheric Water Vapor by Combining Interferometric Synthetic Aperture Radar and GNSS Observations.” Journal of Geophysical Research Atmospheres 120 (4): 1391–1403. https://doi.org/10.1002/2014JD022419.
  • Fu, S., and F. Xu. 2022. “Differentiable SAR Renderer and Image-Based Target Reconstruction.” IEEE Transactions on Image Processing 31:6679–6693. https://doi.org/10.1109/TIP.2022.3215069.
  • Guo, Q. Y., J. H. Hou, S. H. Chen, and Y. J. Sun. 2020. “Near Real-Time Detecting of Atmospheric Water Vapor Content Based on BeiDou Navigation Satellite System.” Journal of Physics: Conference Series 1654 (1): 012125–012130. https://doi.org/10.1088/1742-6596/1654/1/012125.
  • Han, H., W. Lu, and F. Feng. 2023. “SAR Image Target Recognition Method by Global and Local Dictionary Sparse Representation.” Applied Artificial Intelligence 37 (1): 959–976. https://doi.org/10.1080/08839514.2023.2189674.
  • Hanssen, R. F. 2001. Radar Interferometry Data Interpretation and Error Analysis. Dordrecht: Kluwer Academic Publishers.
  • Hooper, A., P. Segall, and H. Zebker. 2007. “Persistent Scatterer Interferometric Synthetic Aperture Radar for Crustal Deformation Analysis, with Application to Volcan Alcedo, Galapagos.” Journal of Geophysical Research, Solid Earth: JGR 112 (B7): B07407–B07427. https://doi.org/10.1029/2006JB004763.
  • Hu, J., P. Li, X. Zhang, S. Bisnath, and L. Pan. 2022. “Precise Point Positioning with BDS-2 and BDS-3 Constellations: Ambiguity Resolution and Positioning Comparison.” Advances in Space Research 70 (7): 1830–1846. https://doi.org/10.1016/j.asr.2022.06.056.
  • Li, Z. H. 2022. “Locating the Small 1999 Frenchman Flat, Nevada Earthquake with InSar Stacking.” Journal of Geodesy and Geoinformation Science 5 (1): 39–49. https://doi.org/10.11947/j.JGGS.2022.0105.
  • Li, Z. H., Y. Chen, R. Y. Xiao, and Z. Wu. 2022. “Entering a New Era of InSar: Advanced Techniques and Emerging Applications.” Journal of Geodesy and Geoinformation Science 5 (1): 1–4. https://doi.org/10.11947/j.JGGS.2022.0101.
  • Li, D. W., L. M. Jiang, H. J. Jiang, J. L. Dong, and H. S. Wang. 2019. “InSar Phase Simulation of Solid Earth Tide and Its Influence on Surface Deformation Monitoring at Wide-Area Scale.” Chinese Journal of Geophysics 62 (12): 4527–4539. https://doi.org/10.6038/cjg2019M0595.
  • Lu, P., J. Han, T. Hao, R. Li, and G. Qiao. 2020. “Seasonal Deformation of Permafrost in Wudaoliang Basin in Qinghai-Tibet Plateau Revealed by StaMPS-Insar.” Marine Geodesy 43 (3): 248–268. https://doi.org/10.1080/01490419.2019.1698480.
  • Luzi, G., A. Barra, Q. F. Gao, L. P. Espín, R. Palamà, O. Monserrat, M. Crosetto, and X. Colell. 2022. “A Low-Cost Active Reflector and a Passive Corner Reflector Network for Assisting Landslide Monitoring Using Multi-Temporal InSar.” Remote Sensing Letters 13 (11): 1080–1089. https://doi.org/10.1080/2150704X.2022.2122891.
  • Ma, Z., G. Guo, M. Cai, X. Chen, W. Li, and L. Zhang. 2022. “A Combined Linear–Nonlinear Short-Term Rainfall Forecast Method Using GNSS-Derived PWV.” Atmosphere 13 (9): 1381–1396. https://doi.org/10.3390/atmos13091381.
  • Massimo, A., S. Claudia, C. Flavio, R. Vito, G. Francesco, P. Giuseppe, and B. Pierre. 2021. “Water Vapor Tomography of the Lower Atmosphere from Multiparametric Inversion: The Mt. Etna Volcano Test Case.” Frontiers in Earth Science 8:510514–510528. https://doi.org/10.3389/feart.2020.510514.
  • Mateus, P., J. Catalao, G. Nico, and P. Benevides. 2020. “Mapping Precipitable Water Vapor Time Series from Sentinel-1 Interferometric SAR.” IEEE Transactions on Geoscience & Remote Sensing 58 (2): 1373–1379. https://doi.org/10.1016/10.1109/TGRS.2019.2946077.
  • Mateus, P., G. Nico, and J. Catalão. 2013. “Can Spaceborne SAR Interferometry Be Used to Study the Temporal Evolution of PWV.” Atmospheric Research 119:70–80. https://doi.org/10.1016/j.atmosres.2011.10.002.
  • Matsuzawa, K., and Y. Kinoshita. 2021. “Error Evaluation of L-Band InSar Precipitable Water Vapor Measurements by Comparison with GNSS Observations in Japan.” Remote Sensing of Environment 13:4866–4883. https://doi.org/10.3390/rs13234866.
  • Ma, X., Y. Yao, B. Zhang, and C. He. 2022. “Retrieval of High Spatial Resolution Precipitable Water Vapor Maps Using Heterogeneous Earth Observation Data.” Remote Sensing of Environment 278:113100–11313. https://doi.org/10.1016/j.rse.2022.113100.
  • Mertikas, S., P. Partsinevelos, A. Tripolitsiotis, C. Kokolakis, G. Petrakis, and X. Frantzis. 2020. “Validation of Sentinel-3 OLIC Integrated Water Vapor Products Using Regional Gnss Measurements in Crete, Greece.” Remote Sensing 12 (16): 2606–2627. https://doi.org/10.3390/rs12162606.
  • Meyer, F., R. Bamler, R. Leinweber, and J. Fischer 2008. “A Comparative Analysis of Tropospheric Water Vapor Measurements from MERIS and SAR.” IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium 4:228–231. https://doi.org/10.1109/IGARSS.2008.4779699.
  • Miranda, P. M., P. Mateus, G. Nico, J. Catalão, R. Tomé, and M. Nogueira. 2019. “InSAR meteorology: High-resolution geodetic data can increase atmospheric predictability.” Geophysical Research Letters 46 (5): 2949–2955. https://doi.org/10.1029/2018GL081336.
  • Modava, M., G. Akbarizadeh, and M. Soroosh. 2018. “Integration of Spectral Histogram and Level Set for Coastline Detection in SAR Images.” IEEE Transactions on Aerospace and Electronic Systems 55 (2): 810–819. https://doi.org/10.1109/TAES.2018.2865120.
  • Modava, M., G. Akbarizadeh, and M. Soroosh. 2019. “Hierarchical Coastline Detection in SAR Images Based on Spectral‐Textural Features and Global–Local Information.” IET Radar Sonar & Navigation 13 (12): 2183–2195. https://doi.org/10.1049/iet-rsn.2019.0063.
  • Palamà, R., O. Monserrat, B. Crippa, M. Crosetto, G. Bru, P. Ezquerro, and M. Bejar-Pizarro. 2023. “Radargrammetry DEM Generation Using High-Resolution SAR Imagery Over La Palma During the 2021 Cumbre Vieja Volcanic Eruption.” IEEE Geoscience & Remote Sensing Letters 20:1–5. https://doi.org/10.1109/LGRS.2023.3238182.
  • Tang, W., M. S. Liao, L. Zhang, W. Li, and W. Yu. 2016. “High-Spatial-Resolution Mapping of Precipitable Water Vapour Using SAR Interferograms, GPS Observations and ERA-Interim Reanalysis.” Atmospheric Measurement Techniques 9 (9): 4487–4501. https://doi.org/10.5194/amt-9-4487-2016.
  • Vajedian, S., M. Motagh, and F. Nilfouroushan. 2015. “StaMps Improvement for Deformation Analysis in Mountainous Regions: Implications for the Damavand Volcano and Mosha Fault in Alborz.” Remote Sensing 7 (7): 8323–8347. https://doi.org/10.3390/rs70708323.
  • Xiong, Z. H., X. G. Sun, J. Z. Sang, and X. M. Wei. 2021. “Modify the Accuracy of MODIS PWV in China: A Performance Comparison Using Random Forest, Generalized Regression Neural Network and Back-Propagation Neural Network.” Remote Sensing 13 (11): 2215–2232. https://doi.org/10.3390/rs13112215.
  • Yang, Y., L. Liu, J. Li, Y. Yang, T. Zhang, Y. Mao, B. Sun, and X. Ren. 2021. “Featured Services and Performance of BDS-3.” Science Bulletin 66 (20): 2135–2143. https://doi.org/10.1016/j.scib.2021.06.013.
  • Yang, Z. R., W. F. Xi, Z. Q. Yang, Z. T. Shi, and T. G. Qian. 2022. “Monitoring and Prediction of Glacier Deformation in the Meili Snow Mountain Based on InSar Technology and GA-BP Neural Network Algorithm.” Sensors 22 (21): 8350–8373. https://doi.org/10.3390/s22218350.
  • Yu, C., Z. Li, and N. T. Penna. 2017. “Interferometric Synthetic Aperture Radar Atmospheric Correction Using a GPS-Based Iterative Tropospheric Decomposition Model.” Remote Sensing of Environment 204:109–121. https://doi.org/10.1016/j.rse.2017.10.038.
  • Yu, C., Z. H. Li, and C. Song. 2021. “Geodetic Constraints on Recent Subduction Earthquakes and Future Seismic Hazards in the Southwestern Coast of Mexico.” Geophysical Research Letters 48 (13): 094192–094201. https://doi.org/10.1029/2021GL094192.
  • Zhang, W., Y. Lou, J. S. Haase, R. Zhang, G. Zheng, J. Huang, C. Shi, and J. Liu. 2017. “The Use of Ground-Based GPS Precipitable Water Measurements Over China to Assess Radiosonde and ERA-Interim Moisture Trends and Errors from 1999 to 2015.” Journal of Climate 30 (19): 7643–7667. https://doi.org/10.1175/JCLI-D-16-0591.1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.