3,372
Views
150
CrossRef citations to date
0
Altmetric
Original Articles

Complex Network Topology of Transportation Systems

&
Pages 658-685 | Received 18 Feb 2013, Accepted 23 Sep 2013, Published online: 29 Oct 2013

References

  • Anez, J., de la Barra, T., & Perez, B. (1996). Dual graph representation of transport networks. Transport Research, 30(3), 209–216. doi: 10.1016/0191-2615(95)00024-0
  • Bagler, G. (2008). Analysis of the airport network of India as a complex weighted network. Physica A, 387, 2972–2980. doi: 10.1016/j.physa.2008.01.077
  • Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509–512. doi: 10.1126/science.286.5439.509
  • Barrat, A., Barthelemy, M., & Vespignani, A. (2004). Modeling the evolution of weighted networks. Physical Review E, 70, 066149. doi: 10.1103/PhysRevE.70.066149
  • Barthelemy, M. (2004). Betweenness centrality in large complex networks. The European Physical Journal B, 38, 163–168. doi: 10.1140/epjb/e2004-00111-4
  • Barthelemy, M. (2011). Spatial networks. Physics Report, 449, 1–101.
  • Barthelemy, M., & Flammini, A. (2008). Modeling urban street patterns. Physical Review Letters, 100, 138702. doi: 10.1103/PhysRevLett.100.138702
  • Batty, M. (2004). A new theory of space syntax (CASA working paper NO.75). Retrieved from http://www.casa.ucl.ac.uk/publications/full_list.htm
  • Black, W. R. (2003). Transportation: A geographical analysis. New York, NY: Guilford.
  • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complex networks: Structure and dynamics. Physical Reports, 424, 175–308. doi: 10.1016/j.physrep.2005.10.009
  • Buhl, J., Gautrais, J., Reeves, N., Sole, R. V., Valverde, S., Kuntz, P., & Theraulaz, G. (2006). Topological patterns in street networks of self-organized urban settlements. The European Physical Journal B, 49, 513–522. doi: 10.1140/epjb/e2006-00085-1
  • Cardillo, A., Scellato, S., Latora, V., & Porta, S. (2006). Structural properties of planar graphs of urban street patterns. Physical Review E, 73, 066107. doi: 10.1103/PhysRevE.73.066107
  • Chan, S. H. Y., Donner, R. V., & Lämmer, S. (2011). Urban road networks — spatial networks with universal geometric features? A case study on Germany's largest cities. The European Physical Journal B, 84, 563–577. doi: 10.1140/epjb/e2011-10889-3
  • Chen, Y. Z., Li, N., & He, D. R. (2007). A study on some urban bus transport networks. Physica A, 376, 747–754. doi: 10.1016/j.physa.2006.10.071
  • Chi, L. P., Wang, R., Su, H., Xu, X. P., Zhao, J. S., Li, W., & Cai, X. (2003). Structural properties of US flight network. Chinese Physics Letters, 20, 1393–1396. doi: 10.1088/0256-307X/20/8/362
  • Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-law distributions in empirical data. Society for Industrial and Applied Mathematics Review, 51(4), 661–703.
  • Crucitti, P., Latora, V., & Porta, S. (2006). Centrality measures in spatial networks of urban streets. Physical Review E, 73, 036125. doi: 10.1103/PhysRevE.73.036125
  • Derrible, S. (2012). Network Centrality of Metro Systems. PloS ONE, 7(7), e40575. doi: 10.1371/journal.pone.0040575
  • Derrible, S., & Kennedy, C. (2009). Network analysis of subway systems in the world using updated graph theory. Transportation Research Record, 2112, 17–25. doi: 10.3141/2112-03
  • Derrible, S., & Kennedy, C. (2010a). The complexity and robustness of metro networks. Physica A, 389, 3678–3691. doi: 10.1016/j.physa.2010.04.008
  • Derrible, S., & Kennedy, C. (2010b). Characterizing metro networks: States, form, and structure. Transportation, 37, 275–297. doi: 10.1007/s11116-009-9227-7
  • Diestel, R. (2005). Graph theory. New York, NY: Springer-Verlag Heidelberg.
  • Ferber, C. V., Holovatch, T., Holovatch, Y., & Palchykov, V. (2007). Network harness: Metropolis public transport. Physica A, 380, 585–591. doi: 10.1016/j.physa.2007.02.101
  • Ferber, C. V., Holovatch, T., Holovatch, Y., & Palchykov, V. (2009). Public transport network: Empirical analysis and modeling. The European Physical Journal B, 68, 261–275. doi: 10.1140/epjb/e2009-00090-x
  • Freeman, L. C. (1977). A set of measures of centrality based upon betweenness. Sociometry, 40, 35–41. doi: 10.2307/3033543
  • Freeman, L. C. (1979). Centrality in social networks: Conceptual clarification. Social Networks, 1(3), 215–239. doi: 10.1016/0378-8733(78)90021-7
  • Garrisoon, W., & Marble, D. (1962). The structure of transportation network. Chicago, IL: The Transportation Center, Northwestern University.
  • Guida, M., & Maria, F. (2007). Topology of the Italian airport network: A scale-free small-world network with a fractal structure? Chaos, Solitons & Fractals, 31(3), 527–536. doi: 10.1016/j.chaos.2006.02.007
  • Guimerà, R., & Amaral, L. A. N. (2004). Modeling the world-wide airport network. The European Physical Journal B, 38, 381–385. doi: 10.1140/epjb/e2004-00131-0
  • Guimerà, R., & Amaral, L. A. N. (2005). Functional cartography of complex metabolic networks. Nature, 433, 895–900. doi: 10.1038/nature03288
  • Guimerà, R., Mossa, S., Turtschi, A., & Amaral, L. A. N. (2005). The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles. Proceedings of the National Academy of Sciences, USA, 102, 7794–7799. doi: 10.1073/pnas.0407994102
  • Guo, L., & Cai, X. (2008). Degree and weighted properties of the directed China railway network. International Journal of Modern Physics C, 19, 1909–1918. doi: 10.1142/S012918310801331X
  • Haggett, P., & Chorley, R. J. (1969). Network analysis in geography. London: Edward Arnold.
  • Hiller, B., & Hanson, J. (1984). The social logic of space. Oxford: Cambridge University Press.
  • Hu, M. B., Jiang, R., Wang, R. L., & Wu, Q. S. (2009). Urban traffic simulated from the dual representation: Flow, crisis and congestion. Physics Letter A, 373, 2007–2011. doi: 10.1016/j.physleta.2009.04.014
  • Hu, M. B., Jiang, R., Wu, Y. H., Wang, W. X., & Wu, Q. S. (2008). Urban traffic from the perspective of dual graph. The European Physical Journal B, 63, 127–133. doi: 10.1140/epjb/e2008-00219-5
  • Hu, Y. H., & Zhu, D. L. (2009). Empirical analysis of the worldwide maritime transportation network. Physica A, 388, 2061–2071. doi: 10.1016/j.physa.2008.12.016
  • Jiang, B. (2004). Topological analysis of urban street networks. Environment and Planning B: Planning and Design, 31, 151–162. doi: 10.1068/b306
  • Jiang, B. (2007). A topological pattern of urban street networks: Universality and peculiarity. Physica A, 384, 647–655. doi: 10.1016/j.physa.2007.05.064
  • Jiang, B. (2009). Street hierarchies: A minority of streets account for a majority of traffic flow. International Journal of Geographical Information Science, 23(8), 1033–1048. doi: 10.1080/13658810802004648
  • Jiang, B., & Claramunt, C. (2002). Integration of space syntax into GIS: New perspectives for urban morphology. Transactions in GIS, 6(3), 295–309. doi: 10.1111/1467-9671.00112
  • Jiang, B., & Claramunt, C. (2004). A structural approach to the model generalization of an urban street network. Geoinformatica, 8(2), 157–171. doi: 10.1023/B:GEIN.0000017746.44824.70
  • Jiang, B., Duan, Y., Lu, F., Yang, T., & Zhao, J. (2013). Topological structure of urban street network from the perspective of degree correlations. Preprint arXiv: 1308.1533.
  • Jiang, B., Yin, J., & Zhao, S. (2009). Characterizing human mobility patterns in a large street network. Physical Review E, 80, 021136. doi: 10.1103/PhysRevE.80.021136
  • Kalapala, V., Sanwalani, V., Clauset, A., & Moore, C. (2006). Scale invariance in road networks. Physical Review E, 73, 026130. doi: 10.1103/PhysRevE.73.026130
  • Kaluza, P., Kolzsch, A., Gastner, M. T., & Blasius, B. (2010). The complex network of global cargo ship movements. Journal of the Royal Society Interface, 7, 1093–1103. doi: 10.1098/rsif.2009.0495
  • Kansky, K. (1963). Structure of transportation networks. Chicago, IL: University of Chicago Press.
  • Kurant, M., & Thiran, P. (2006). Trainspotting: Extraction and analysis of traffic and topologies of transportation networks. Physical Review E, 74, 036114. doi: 10.1103/PhysRevE.74.036114
  • Lammer, S., Gehlsen, B., & Helbing, D. (2006). Scaling laws in the spatial structure of urban road networks. Physica A, 361, 89–95. doi: 10.1016/j.physa.2006.01.051
  • Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letters, 87, 198701. doi: 10.1103/PhysRevLett.87.198701
  • Latora, V., & Marchiori, M. (2002). Is the Boston subway a small-world network? Physica A, 314, 109–113. doi: 10.1016/S0378-4371(02)01089-0
  • Latora, V., & Marchiori, M. (2007). A measure of centrality based on network efficiency. New Journal of Physics, 9, 188. doi: 10.1088/1367-2630/9/6/188
  • Lee, K., Jung, W. S., Park, J. S., & Chio, M. Y. (2008). Statistical analysis of the metropolitan Seoul subway system: Network structure and passenger flows. Physica A, 387, 6231–6234. doi: 10.1016/j.physa.2008.06.035
  • Levinson, D. (2012). Network structure and city size. PloS ONE, 7, e29721. doi: 10.1371/journal.pone.0029721
  • Li, W., & Cai, X. (2004). Statistical analysis of airport network of China. Physical Review E, 69, 046106. doi: 10.1103/PhysRevE.69.046106
  • Li, W., & Cai, X. (2007). Empirical analysis of a scale-free railway network in China. Physica A, 382, 693–703. doi: 10.1016/j.physa.2007.04.031
  • Lin, J. Y. (2012). Network analysis of China's aviation system, statistical and spatial structure. Journal of Transport Geography, 22, 109–117. doi: 10.1016/j.jtrangeo.2011.12.002
  • Liu, H. K., & Zhou, T. (2007). Empirical study of China city airline network. Acta Physica Sinica, 56(1), 106–112 (in Chinese).
  • Liu, L., Li, R., Shao, F. J., & Sun, R. C. (2009). Complexity analysis of Qingdao's public transport network. Proceedings of the International Symposium on Intelligent Information Systems and Applications, Qingdao, P.R. China, 300–303.
  • Lu, H. P., & Shi, Y. (2007). Complexity of public transport networks. Tsinghua Science and Technology, 12(2): 204–213.
  • Ma, X. L., & Timberlake, M. F. (2008). Identifying China's leading world city: A network approach. GeoJournal, 71, 19–35. doi: 10.1007/s10708-008-9146-8
  • Majima, T., Katuhara, M., & Takadama, K. (2007). Analysis on transport network of railway, subway and waterbus in Japan. Studies in Computational Intelligence, 56, 99–113. doi: 10.1007/978-3-540-71075-2_8
  • Masucci, A. P., Smith, D., Crooks, A., & Batty, M. (2009). Random planar graphs and the London street network. The European Physical Journal B, 71, 259–271. doi: 10.1140/epjb/e2009-00290-4
  • Montis, A. D., Barthelemy, M., Chessa, A., & Vespignani, A. (2007). The structure of inter-urban traffic: A weighted network analysis. Environment and Planning B: Planning and Design, 34(5), 905–924. doi: 10.1068/b32128
  • Mozes, S. (2013). Efficient algorithms for shortest-path and maximum-flow problems in planar graphs (PhD thesis). Brown University, USA.
  • Nagurney, A., & Qiang, Q. (2007). A network efficiency measure for congested networks. Europhysics Letter, 79, 1–5.
  • Nagurney, A., & Qiang, Q. (2008). An efficiency measure for dynamic networks modeled as evolutionary variational inequalities with application to the internet and vulnerability analysis. Netnomics, 9, 1–20. doi: 10.1007/s11066-008-9008-z
  • Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Reviews, 45, 167–256. doi: 10.1137/S003614450342480
  • Paleari, S., Redondi, R., & Malighetti, P. (2010). A comparative study of airport connectivity in China, Europe and US: Which network provides the best service to passengers? Transportation Research Part E, 46, 198–210. doi: 10.1016/j.tre.2009.08.003
  • Porta, S., Crucitti, P., & Latora, V. (2006a). The network analysis of urban streets: A dual approach. Physica A, 369, 853–866. doi: 10.1016/j.physa.2005.12.063
  • Porta, S., Crucitti, P., & Latora, V. (2006b). The network analysis of urban streets: A primal approach. Environment and Planning B: Planning and Design, 33(5), 705–725. doi: 10.1068/b32045
  • Porta, S., Latora, V., Wang, F. H., Strano, E., Cardillo, A., Scellato, S., Iacoviello, V., & Messora, R. (2009). Street centrality and densities of retail and services in Bologna, Italy. Environment and Planning B: Planning and Design, 36, 450–465. doi: 10.1068/b34098
  • Reed, W. J. (2003). The Pareto law of incomes — an explanation and an extension. Physica A, 319, 469–486. doi: 10.1016/S0378-4371(02)01507-8
  • Reed, W. J., & Jorgensen, M. (2004). The double pareto-lognormal distribution — a new parametric model for size distributions. Communications in Statistics Theory and Methods, 33, 1733–1753. doi: 10.1081/STA-120037438
  • Rocha, L. E. C. D. (2009). Structural evolution of Brazilian airport network. Journal of Statistical Mechanics: Theory and Experiment, 4, P04020. doi: 10.1088/1742-5468/2009/04/P04020
  • Rodrigue, J.-P., Comtois, C., & Slack, B. (2009). The geography of transport systems. New York, NY: Routledge.
  • Roth, C., Kang, S. M., Batty, M., & Barthelemy, M. (2012). A long-time limit for world subway networks. Journal of Royal Society Interface, 9(75), 2540–2550. doi: 10.1098/rsif.2012.0259
  • Sapre, M., & Parekh, N. (2011). Analysis of centrality measures of airport network of China. Pattern Recognition and Machine Intelligence, 6744, 376–381. doi: 10.1007/978-3-642-21786-9_61
  • Scellato, S., Cardillo, A., Latora, V., & Porta, S. (2006). The backbone of a city. The European Physical Journal B, 50, 221–225. doi: 10.1140/epjb/e2006-00066-4
  • Seaton, K. A., & Hackett, L. M. (2004). Stations, trains and small-world networks. Physica A, 339, 635–644. doi: 10.1016/j.physa.2004.03.019
  • Sen, P., Dasgupta, S., Chatterjee, A., Sreeram, P. A., Mukherjee, G., & Manna, S. S. (2003). Small-world properties of the Indian Railway network. Physical Review E, 67, 036106. doi: 10.1103/PhysRevE.67.036106
  • Sienkiewicz, J., & Holyst, J. A. (2005). Statistical analyses of 22 public transport networks in Poland. Physical Review E, 72, 046127. doi: 10.1103/PhysRevE.72.046127
  • Soh, H., Lim, S., Zhang, T. Y., Fu, X. J., Lee, G. K. K., Hung, T. G. G., Di, P., Prakasam, S., & Wong, L. (2010). Weighted complex network analysis of travel routes on the Singapore public transportation system. Physica A, 389, 5852–5863. doi: 10.1016/j.physa.2010.08.015
  • Wang, J. E., Mo, H. H., Wang, F. H., & Jin, F. J. (2011). Exploring the network structure and nodal centrality of China's air transport network: A network approach. Journal of Transport Geography, 19, 712–721. doi: 10.1016/j.jtrangeo.2010.08.012
  • Wang, M., Hu, B. Q., Wu, X., & Niu, Y. Q. (2009). The topological and statistical analysis of public transport network based on fuzzy clustering. Advances in Intelligent and Soft Computing, 62, 1183–1191. doi: 10.1007/978-3-642-03664-4_126
  • Wang, R., Tan, J. X., Wang, X., Wang, D. J., & Cai, X. (2008). Geographic coarse graining analysis of the railway network of China. Physica A, 387, 5639–5646. doi: 10.1016/j.physa.2008.05.052
  • Wang, Y. L., Zhou, T., Shi, J. J., Wang, J., & He, D. R. (2009). Empirical analysis of dependence between stations in Chinese railway network. Physica A, 388, 2949–2955. doi: 10.1016/j.physa.2009.03.026
  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” network. Nature, 393, 440–442. doi: 10.1038/30918
  • Wilson, R. J. (2010). Introduction to graph theory. Harlow: Prentice Hall.
  • Xie, F., & Levinson, D. (2007). Measuring the structure of road networks. Geographical Analysis, 39, 336–356. doi: 10.1111/j.1538-4632.2007.00707.x
  • Xie, F., & Levinson, D. (2009). Modeling the growth of transportation networks: A comprehensive review. Networks and Spatial Economics, 9(3), 291–307. doi: 10.1007/s11067-007-9037-4
  • Xie, F., & Levinson, D. (2011). Evolving transportation networks. New York, NY: Springer.
  • Xu, X. P., Hu, J. H., & Liu, F. (2007a). Emprirical analysis of the ship-transport network of China. Chaos, 17, 023129. doi: 10.1063/1.2740564
  • Xu, X. P., Hu, J. H., Liu, F., & Liu, L. S. (2007b). Scaling and correlations in three bus-transport networks of China. Physcia A, 374, 411–448.
  • Xu, Z., & Harriss, R. (2008). Exploring the structure of the U.S. intercity passenger air transportation network: A weighted complex network approach. GeoJournal, 73, 87–102.
  • Zeng, H. L., Guo, Y. D., Zhu, C. P., Mitrovic, M., & Tadic, B. (2009). Congestion patterns of traffic studied on Nanjing city dual graph. Proceedings of the 16th International Conference on Digital Signal Processing, 982–989.
  • Zhang, J., Cao, X. B., Du, W. B., & Cai, K. Q. (2010). Evolution of Chinese airport network. Physica A, 389, 3922–3931. doi: 10.1016/j.physa.2010.05.042
  • Zou, S. R., Zhou, T., Liu, A. F., Xu, X. L., & He, D. R. (2010). Topological relation of layered complex networks. Physics Letters A, 374, 4406–4410. doi: 10.1016/j.physleta.2010.08.073

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.