2,490
Views
4
CrossRef citations to date
0
Altmetric
Articles

Recent developments in traffic flow modelling using macroscopic fundamental diagram

, , & ORCID Icon
Pages 689-710 | Received 22 Feb 2019, Accepted 27 Feb 2020, Published online: 06 Mar 2020

References

  • Aboudolas, K., & Geroliminis, N. (2013). Perimeter and boundary flow control in multi-reservoir heterogeneous networks. Transportation Research Part B: Methodological, 55, 265–281.
  • Allen, H.G. (1969). Analysis and design of structural sandwich panels. Oxford, New York: Pergamon Press.
  • Alsalhi, R., Dixit, V.V., & Gayah, V.V. (2018). On the existence of network macroscopic safety diagrams: Theory, simulation and empirical evidence. PLoS ONE, 13(8), 1–20.
  • Amirgholy, M., & Gao, H.O. (2017). Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: User equilibrium, system optimum, and pricing strategies. Transportation Research Part B: Methodological, 104, 215–237.
  • Ampountolas, K., Zheng, N., & Geroliminis, N. (2014). Perimeter flow control of bi-modal urban road networks: A robust feedback control approach. European control conference (ECC). IEEE, (pp. 2569–2574), Starsbourg, France.
  • An, K., Chiu, Y., Hu, X., & Chen, X. (2018). A network partitioning algorithmic approach for macroscopic fundamental diagram-based hierarchical traffic network management. IEEE Transactions on Intelligent Transportation Systems, 19(4), 1130–1139.
  • Barlovic, R., Santen, L., Schadschneider, A., & Schreckenberg, M. (1998). Metastable states in cellular automata for traffic flow. The European Physical Journal B - Condensed Matter and Complex Systems, 5(3), 793–800.
  • Botma, H. (1978). State-of-the-art report “Traffic Flow Models” (in Dutch). Research Report R-78-40, SWOV.
  • Buckely, D.J. (1968). A semi-poisson model of traffic flow. TransporTation Science, 2(2), 107–133.
  • Buisson, C., & Ladier, C. (2009). Exploring the impact of homogeneity of traffic measurements on the existence of macroscopic fundamental diagrams. Transportation Research Record: Journal of the Transportation Research Board, 2124(1), 127–136.
  • Cassidy, M. J., Jang, K., & Daganzo, C. F. (2011). Macroscopic fundamental diagrams for freeway networks: Theory and observation. Transportation Research Record: Journal of the Transportation Research Board, 2260(1), 8–15.
  • Chiabaut, N. (2015). Evaluation of a multimodal urban arterial: The passenger macroscopic fundamental diagram. Transportation Research Part B: Methodological, 81, 410–420.
  • Courbon, T., & Leclercq, L. (2011). Cross-comparison of macroscopic fundamental Diagram estimation methods. Procedia – Social and Behavioral Sciences, 20(6), 417–426.
  • Daganzo, C.F. (1992). The cell transmission model. Part I: A simple dynamic representation of highway traffic. UC Berkeley: California Partners for Advanced Transportation Technology, 288(4), 269–281.
  • Daganzo, C.F. (2005). A variational formulation of kinematic waves: Basic theory and complex boundary conditions. Transportation Research Part B: Methodological, 39(2), 187–196.
  • Daganzo, C.F., Gayah, V.V., & Gonzales, E.J. (2011). Macroscopic relations of urban traffic variables: Bifurcations, multivaluedness and instability. Transportation Research Part B: Methodological, 45(1), 278–288.
  • Daganzo, C.F., & Geroliminis, N. (2008). An analytical approximation for the macroscopic fundamental diagram of urban traffic. Transportation Research Part B: Methodological, 42(9), 771–781.
  • Daganzo, C.F., & Knoop, V.L. (2016). Traffic flow on pedestrianized streets. Transportation Research Part B: Methodological, 86, 211-222.
  • Daganzo, C.F., & Lehe, L.J. (2016). Traffic flow on signalized streets. Transportation Research Part B: Methodological, 90, 56-69.
  • Dakic, I., & Menendez, M. (2018). On the use of Lagrangian observations from public transport and probe vehicles to estimate car space-mean speeds in bi-modal urban networks. Transportation Research Part C: Emerging Technologies, 91, 317–334.
  • Dakic, I., & Stevanovic, A. (2018). On development of arterial fundamental diagrams based on surrogate density measures from adaptive traffic control systems utilizing stop–line detection. Transportation Research Part C: Emerging Technologies, 94, 133–150.
  • Delis, A.I., Nikolos, I.K., & Papageorgiou, M. (2015). Macroscopic traffic flow modeling with adaptive cruise control: Development and numerical solution. Computers & Mathematics with Applications, 70(8), 1921–1947.
  • DePrator, A.J., Hitchcock, O., & Gayah, V.V. (2017). Improving urban street network efficiency by prohibiting conflicting left turns at signalized intersections. Transportation Research Record: Journal of the Transportation Research Board, 2622(1), 58–69.
  • Ding, H., Guo, F., Zheng, X.Y., & Zhang, W.H. (2017). Traffic guidance-perimeter flow control coupled method for the congestion in a macro network. Transportation Research Part C: Emerging Technologies, 81, 300-316.
  • Ding, H., Zhang, Y., & Zheng, X.Y. (2018). Hybrid perimeter flow control for two-region urban cities with different states. IEEE Transactions on Control Systems Technology, 26(6), 2049-2062.
  • Edie, L.C. (1963). Discussion of traffic stream measurements and definitions. In: Almond, J. (Ed.), Proceedings of the 2nd international symposium on the theory of traffic flow (pp. 139–154). Paris, France: OECD.
  • Fu, H., Liu, N., & Hu, G. (2017). Hierarchical perimeter control with guaranteed stability for dynamically coupled heterogeneous urban traffic. Transportation Research Part C: Emerging Technologies, 83, 18-38.
  • Gayah, V.V., & Daganzo, C.F. (2011). Clockwise hysteresis loops in the macroscopic fundamental Diagram: An effect of network instability. Transportation Research Part B: Methodological, 45(4), 643–655.
  • Gayah, V.V., & Daganzo, C.F. (2012). Analytical capacity comparison of one-way and two-way signalized street networks. Transportation Research Record: Journal of the Transportation Research Board, 2301, 76–85.
  • Gayah, V.V., Gao, X., & Nagle, A.S. (2014). On the impacts of locally adaptive signal control on urban network stability and the macroscopic fundamental Diagram. Transportation Research Part B: Methodological, 70, 255–268.
  • Geroliminis, N., & Boyaci, B. (2012). The effect of variability of urban systems characteristics in the network capacity. Transportation Research Part B: Methodological, 46(10), 1607–1623.
  • Geroliminis, N., & Daganzo, C.F. (2008). Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings. Transportation Research Part B: Methodological, 42(9), 759–770.
  • Geroliminis, N., Haddad, J., & Ramezani, M. (2013). Optimal perimeter control for two urban regions with macroscopic fundamental diagrams: A model predictive approach. IEEE Transactions on Intelligent Transportation Systems, 14(1), 348–359.
  • Geroliminis, N., & Sun, J. (2011a). Hysteresis phenomena of a macroscopic fundamental diagram in freeway networks. Procedia - Social and Behavioral Sciences, 17, 213–228.
  • Geroliminis, N., & Sun, J. (2011b). Properties of a well-defined macroscopic fundamental diagram for urban traffic. Transportation Research Part B: Methodological, 45(3), 605–617.
  • Geroliminis, N., Zheng, N., & Ampountolas, K. (2014). A three-dimensional macroscopic fundamental diagram for mixed bi-modal urban networks. Transportation Research Part C: Emerging Technologies, 42, 168–181.
  • Girault, J.T., Gayah, V.V., Guler, S.I., & Menendez, M. (2016). Exploratory analysis of signal coordination impacts on macroscopic fundamental diagram. Transportation Research Record: Journal of the Transportation Research Board, 2560, 36–46.
  • Greenshields, B.D. (1935). A study of highway capacity. Proceedings Highway Research Record, Washington, 14, 448–477.
  • Haddad, J., & Geroliminis, N. (2012). On the stability of traffic perimeter control in two-region urban cities. Transportation Research Part B: Methodological, 46(9), 1159–1176.
  • Haddad, J., & Shraiber, A. (2014). Robust perimeter control design for an urban region. Transportation Research Part B: Methodological, 68, 315–332.
  • Hajiahmadi, M., Knoop, V.L., Schutter, B.D., & Hellendoorn, H. (2013). Optimal dynamic route guidance: A model predictive approach using the macroscopic fundamental diagram. 16th international IEEE conference on intelligent transportation systems (ITSC 2013).
  • Helbing, D. (1996). Gas-kinetic derivation of Navier-Stokes-like traffic equations. Physical Review E, 53(3), 2366–2381.
  • Helbing, D. (1998). Modeling multi-lane traffic flow with queuing effects. Physica A: Statistical Mechanics and its Applications, 242(1), 175–194.
  • Helbing, D. (2009). Derivation of a fundamental diagram for urban traffic flow. The European Physical Journal B, 70, 229-241.
  • Hoogendoorn, S.P., & Bovy, P.H.L. (2001). State-of-the-art of vehicular traffic flow modelling. Institution Of Mechanical Engineers Part I Journal Of Systems And Control Engineering, 215(4), 283–304.
  • Hoogendoorn, S.P., Daamen, W., Knoop, V. L., Steenbakkers, J., & Sarvi, M. (2017). Macroscopic fundamental Diagram for pedestrian networks: Theory and applications. Transportation Research Procedia, 23, 480–496.
  • Huang, J., Hu, M.B., Jiang, R., & Li, M. (2018). Effect of pre-signal in a Manhattan like urban traffic network. Physica A: Statistical Mechanics and its Applications, 503, 71-85.
  • Ji, Y., & Geroliminis, N. (2012). On the spatial partitioning of urban transportation networks. Transportation Research Part B: Methodological, 46(10), 1639–1656.
  • Ji, Y.B.B., Mo, C., Ma, W.J., & Liao, D.B. (2016). Feedback gating control for network based on macroscopic fundamental diagram. Mathematical Problems in Engineering, 1398, 1-11.
  • Keyvan-Ekbatani, M., Kouvelas, A., Papamichail, I., & Papageorgiou, M. (2012). Exploiting the fundamental diagram of urban networks for feedback-based gating. Transportation Research Part B: Methodological, 46(10), 1393–1403.
  • Keyvan-Ekbatani, M., Papageorgiou, M., & Knoop, V.L. (2015). Controller design for gating traffic control in presence of time-delay in urban road networks. Transportation Research Procedia, 7, 651–668.
  • Keyvan-Ekbatani, M., Papageorgiou, M., & Papamichail, I. (2014). Perimeter traffic control via remote feedback gating. Procedia - Social and Behavioral Sciences, 111, 645–653.
  • Kim, S., & Yeo, H., (2017). Evaluating link criticality of road network based on the concept of macroscopic fundamental diagram. Transportmetrica A: Transport Science, 13(2), 162-193.
  • Kouvelas, A., Saeedmanesh, M., & Geroliminis, N. (2015). Feedback perimeter control for heterogeneous urban networks using adaptive optimization. IEEE 18th international conference on intelligent transportation systems.
  • Kouvelas, A., Saeedmanesh, M., & Geroliminis, N. (2017). A linear Formulation for model predictive perimeter traffic control in cities * *this research has been supported by the ERC (European research Council) Starting Grant “METAFERW: Modelling and controlling traffic congestion and propagation in large-scale urban multi-modal networks” (Grant #338205). IFAC PapersOnLine, 50, 8543–8548.
  • Kutadinata, R., Moase, W., Manzie, C., Zhang, L.L., & Garoni, T. (2016). Enhancing the performance of existing urban traffic light control through extremum-seeking. Transportation Research Part C: Emerging Technologies, 62, 1–20.
  • Laval, J.A., & Castrillón, F. (2015). Stochastic Approximations for the macroscopic fundamental diagram of urban networks. Transportation Research Procedia, 7, 615-630.
  • Laval, J.A., Leclercq, L., & Chiabaut, N. (2018). Minimal parameter formulations of the dynamic user equilibrium using macroscopic urban models: Freeway vs city streets revisited. Transportation Research Part B: Methodological, 117, 676–686.
  • Leclercq, L., Chiabaut, N., & Trinquier, B. (2014). Macroscopic fundamental diagrams: A cross–comparison of estimation methods. Transportation Research Part B: Methodological, 62(2), 1–12.
  • Leclercq, L., & Geroliminis, N. (2013). Estimating MFDs in simple networks with route choice. Procedia - Social and Behavioral Sciences, 80, 99–118.
  • Leclercq, L., Parzani, C., Knoop, V.L., Amourette, J., & Hoogendoorn, S.P. (2015). Macroscopic traffic dynamics with heterogeneous route patterns. Transportation Research Part C: Emerging Technologies, 59, 292–307.
  • Lighthill, M. J., & Whitham, G.B. (1955). On kinematic waves II. A theory of traffic flow on long crowded roads. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 229(1178), 317–345.
  • Liu, W., & Geroliminis, N. (2016). Modeling the morning commute for urban networks with cruising-for-parking: An MFD approach. Transportation Research Part B: Methodological, 93, 470–494.
  • Loder, A., Ambühl, L., Menendez, M., & Axhausen, K.W. (2017). Empirics of multi-modal traffic networks – using the 3D macroscopic fundamental diagram. Transportation Research Part C: Emerging Technologies, 82, 88–101.
  • Lu, S., Wang, J., Zuylen, H. V., & Liu, X. (2013). Deriving the Macroscopic Fundamental Diagram for an urban area using counted flows and taxi GPS. 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013).
  • Mahmassani, H., Williams, J. C., & Herman, R. (1984). Investigation of network-level traffic flow relationships: Some simulation results. Transportation Research Record, 971, 121–130.
  • Mazloumian, A., Geroliminis, N., & Helbing, D. (2010). The spatial variability of vehicle densities as determinant of urban network capacity. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1928), 4627.
  • Mohan, R., & Ramadurai, G. (2013). State-of-the art of macroscopic traffic flow modelling. International Journal of Advances in Engineering Sciences and Applied Mathematics, 5(2), 158–176.
  • Niazi, M., & Hussain, A. (2011). Agent-based computing from multi-agent systems to agent-based models: A visual survey. Scientometrics, 89(2), 479.
  • Nigro, M., Peruzzi, S., Liberto, C., & Valenti, G. (2017). Urban-scale macroscopic fundamental diagram: An application to the real case study of Rome. Advances in Transportation Studies, 42, 71–84.
  • Pan, Y., & Zhang, L. (2018). Report on study of traffic flow with right-turns prohibited. Technique Report, 1–76.
  • Payne, H. J. (1979). FREFLO: A macroscopic simulation model of freeway traffic. Transportation Research Record, 722, 68–77.
  • Prigogine, I., & Herman, R. (1972). Kinetic theory of vehicular traffic. IEEE Transactions on Systems, Man, and Cybernetics, SMC-2(2), 295.
  • Richards, P.I. (1956). Shock waves on the highway. Operations Research, 4(1), 42–51.
  • Saeedmanesh, M., & Geroliminis, N. (2015). Optimization-Based Clustering of Traffic Networks Using Distinct Local Components. 18th IEEE International Conference on Intelligent Transportation Systems, 2015, 2135–2140.
  • Saeedmanesh, M., & Geroliminis, N. (2016). Clustering of heterogeneous networks with directional flows based on “snake” similarities. Transportation Research Part B: Methodological, 91, 250–269.
  • Saeedmanesh, M., & Geroliminis, N. (2017). Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks. Transportation Research Procedia, 23, 962–979.
  • Shi, X., & Lin, H. (2017). Research on the macroscopic fundamental diagram for Shanghai urban expressway network. Transportation Research Procedia, 25, 1300–1316.
  • Sirmatel, I.I., & Geroliminis, N. (2018). Economic model predictive control of large-scale urban road networks via perimeter control and regional route guidance. IEEE Transactions on Intelligent Transportation Systems, 19(4), 1112.
  • Smeed, R.J. (1968). Traffic studies and urban congestion. Journal of Transport Economics & Policy, 2(1), 33–70.
  • Vickrey, W.S. (1969). Congestion theory and transport investment. American Economic Review, 59(2), 251–260.
  • Wu, C.Y., Li, M., Jiang, R., Hao, Q.Y., & Hu, M.B. (2018). Perimeter flow control for urban traffic system based on macroscopic fundamental diagram, Physica A: Statistical Mechanics and its Applications, 503, 231-242.
  • Wu, X., Liu, H.X., & Geroliminis, N. (2011). An empirical analysis on the arterial fundamental diagram. Transportation Research Part B: Methodological, 45(1), 255–266.
  • Xu, F., He, Z.C., Sha, Z.R., Zhuang, L.J., & Sun, W.B. (2013). Assessing the impact of rainfall on traffic operation of urban road network. Procedia – Social and Behavioral Sciences, 96, 82–89.
  • Yildirimoglu, M., Ramezani, M., & Geroliminis, N. (2015). Equilibrium analysis and route guidance in large–scale networks with MFD dynamics. Transportation Research Part C: Emerging Technologies, 59, 404–420.
  • Zhang, L., de Gier, J., & Garoni, T.M. (2014). Traffic disruption and recovery in road networks. Physica A: Statistical Mechanics and its Applications, 401, 82–102.
  • Zhang, L., Garoni, T.M., & de Gier, J. (2013). A comparative study of macroscopic fundamental diagrams of arterial road networks governed by adaptive traffic signal systems. Transportation Research Part B: Methodological, 49, 1–23.
  • Zheng, N., & Geroliminis, N. (2013). On the distribution of urban road space for multimodal congested networks. Transportation Research Part B: Methodological, 57, 326–341.
  • Zheng, N., Waraich, R.A., Axhausen, K.W., & Geroliminis, N. 2012. A dynamic cordon pricing scheme combining the macroscopic fundamental Diagram and an agent-based traffic model. Transportation Research Part A: Policy and Practice, 46(8), 1291–1303.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.