3,489
Views
39
CrossRef citations to date
0
Altmetric
Articles

Strava Metro data for bicycle monitoring: a literature review

ORCID Icon & ORCID Icon
Pages 27-47 | Received 01 Jul 2019, Accepted 14 Jul 2020, Published online: 30 Jul 2020

References

  • Aldred, R., Goodman, A., Gulliver, J., & Woodcock, J. (2018). Cycling injury risk in London: A case-control study exploring the impact of cycle volumes, motor vehicle volumes, and road characteristics including speed limits. Accident Analysis and Prevention, 117, 75–84. doi: 10.1016/j.aap.2018.03.003
  • Amoh-Gyimah, R., Saberi, M., & Sarvi, M. (2016). Macroscopic modeling of pedestrian and bicycle crashes: Across-comparison of estimation methods. Accident Analysis & Prevention, 93, 147–159. doi:10.1016/j.aap.2016.05.0010001-4575 doi: 10.1016/j.aap.2016.05.001
  • Apasnore, P., Ismail, K., & Kassim, A. (2017). Bicycle-vehicle interactions at mid-sections of mixed traffic streets: Examining passing distance and bicycle comfort perception. Accident Analysis and Prevention, 106, 141–148. doi: 10.1016/j.aap.2017.05.003
  • Boss, D., Nelson, T., Winters, M., & Ferster, C. J. (2018). Using crowdsourced data to monitor change in spatial patterns of bicycle ridership. Journal of Transport and Health, 9, 226–233. doi: 10.1016/j.jth.2018.02.008
  • Brum-Bastos, V., Ferster, C. J., Nelson, T., & Winters, M. (2019, November). Where to put bike counters? Stratifying bicycling patterns in the city using crowdsourced data. Transport Findings, doi: 10.32866/10828
  • Cai, Q., Lee, J., Eluru, N., & Abdel-Aty, M. (2016). Macro-level pedestrian and bicycle crash analysis: Incorporating spatial spillover effects in dual state count models. Accident Analysis & Prevention, 93, 14–22. doi:10.1016/j.aap.2016.04.018 C doi: 10.1016/j.aap.2016.04.018
  • Cesme, B., Dock, S., Westrom, R., Lee, K., & Barrios, J. A. (2017). Data-driven urban performance measures: Case study application in the district of Columbia. Transportation Research Record: Journal of the Transportation Research Board, 2605, 45–53. doi: 10.3141/2605-04
  • Chen, C., Wang, H., Roll, J., Nordback, K., & Wang, Y. (2020). Using bicycle app data to develop safety performance functions (SPFs) for bicyclists at intersections: A generic framework. Transportation Research Part A: Policy and Practice, 132, 1034–1052. doi: 10.1016/j.tra.2019.12.034
  • Conrow, L., Wentza, E., Nelson, T., & Pettit, C. (2018). Comparing spatial patterns of crowdsourced and conventional bicycling datasets. Applied Geography, 92, 21–30. doi: 10.1016/j.apgeog.2018.01.009
  • Dadashova, B., & Griffin, G. P. (2020). Random parameter models for estimating statewide daily bicycle counts using crowdsourced data. Transportation Research Part D, 84, 102368. doi: 10.1016/j.trd.2020.102368
  • Deenihan, G., Caulfield, B., & O’Dwyer, D. (2013). Measuring the success of the great Western Greenway in Ireland. Tourism Management Perspectives, 7, 73–82. doi: 10.1016/j.tmp.2013.03.004
  • Dhakar, N. S., & Srinivasan, S. (2014). Route choice modeling using GPS-based travel surveys. Transportation Research Record: Journal of the Transportation Research Board, 2413, 65–73. doi: 10.3141/2413-07
  • Duncan, A. (2017). A comparative analysis of cyclists’ paths through shared space and non-shared intersections in Coventry, England. Journal of Urban Design, 22(6), 833–844. doi: 10.1080/13574809.2017.1336062
  • Fan, W., & Lin, Z. (2019). Evaluating the potential use of crowdsources bicycle data in North Carolina. Center for Advanced Multimodal Mobility Solutions and Education, The University of North Carolina at Charlotte. Retrieved from https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CAMMSE-UNCC-2018-UTC-Project-Report-03-Fan-Final.pdf
  • Good, N., Mölter, A., Ackerson, C., Bachand, A., Carpenter, T., Clark, M. L., … Volckens, J. (2016). The Fort Collins commuter study: Impact of route type and transport mode on personal exposure to multiple air pollutants. Journal of Exposure Science and Environmental Epidemiology, 26, 397–404. doi: 10.1038/jes.2015.68
  • Griffin, G. P., & Jiao, J. (2015a). Crowdsourcing bicycle volumes: Exploring the role of volunteered geographic information and established monitoring methods. URISA Journal, 27(1), 57–66.
  • Griffin, G. P., & Jiao, J. (2015b). Where does bicycling for health happen? Analysing volunteered geographic information through place and plexus. Journal of Transport and Health, 2(2), 238–247. doi: 10.1016/j.jth.2014.12.001
  • Guo, Y., Osama, Y., & Sayed, T. (2018). A cross-comparison of different techniques for modeling macro-level cyclist crashes. Accident Analysis & Prevention, 113, 38–46. doi: 10.1016/j.aap.2018.01.015
  • Haworth, J. (2016). Investigating the potential of activity tracking app data to estimate cycle flows in urban areas. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (pp. 515–519). International Society for Photogrammetry and Remote Sensing.
  • Heesch, K. C., James, B., Washington, T. L., Zuniga, K., & Burke, M. (2016). Evaluation of the Veloway 1: A natural experiment of new bicycle infrastructure in Brisbane. Australia. Journal of Transport and Health, 3(3), 366–376. doi: 10.1016/j.jth.2016.06.006
  • Heesch, K. C., & Langdon, M. (2016). The usefulness of GPS bicycle tracking data for evaluating the impact of infrastructure change on cycling behaviour. Health Promotion Journal of Australia, 27, 222–229. doi: 10.1071/HE16032
  • Hochmair, H. H., Bardin, E., & Ahmouda, A. A. (2019). Estimating bicycle trip volume for Miami-Dade County from Strava tracking data. Journal of Transport Geography, 75, 58–69. doi: 10.1016/j.jtrangeo.2019.01.013
  • Hong, J., McArthur, D. P., & Livingston, M. (2019). The evaluation of large cycling infrastructure investments in Glasgow using crowdsourced cycle data. Transportation, doi: 10.1007/s11116-019-09988-4
  • Hong, J., McArthur, D. P., & Stewart, J. L. (2020). Can providing safe cycling infrastructure encourage people to cycle more when it rains? The use of crowdsourced cycling data (Strava). Transportation Research Part A, 133, 109–121. doi: 10.1016/j.tra.2020.01.008
  • Hood, J., Sall, E., & Charlton, B. (2011). A GPS-based bicycle route choice model for San Francisco. California. Transportation Letters, 3(1), 63–75. doi: 10.3328/TL.2011.03.01.63-75
  • Huber, S., & Lißner, S. (2019). Disaggregation of aggregate GPS-based cycling data—How to enrich commercial cycling data sets for detailed cycling behavior analysis. Transportation Research Interdisciplinary Perspectives, 2, 100041. doi: 10.1016/j.trip.2019.100041
  • Huber, S., Lißner, S., & Francke, A. (2019). Utility of GPS data for urban bicycle traffic planning in Germany: Potentiality, limitations and prospects. International Journal of Transport Development and Integration, 3(1), 1–14. doi: 10.2495/TDI-V3-N1-1-14
  • Jestico, B., Nelson, T., & Winters, M. (2016). Mapping ridership using crowdsourced cycling data. Journal of Transport Geography, 52, 90–97. doi: 10.1016/j.jtrangeo.2016.03.006
  • LaMondia, J. J., & Watkins, K. (2017). Using crowdsourcing to prioritize bicycle route network improvements (Project 2013–083). Southeastern Transportation Research, Innovation, Development and Education Center. Retrieved from https://rosap.ntl.bts.gov/view/dot/36713/dot_36713_DS1.pdf
  • Lee, K., & Sener, I. N. (2019). Understanding potential exposure of bicyclists on roadways to traffic-related air pollution: Findings from El Paso, Texas, using Strava Metro data. International Journal of Environmental Research and Public Health, 16(371), 1–20. doi: 10.3390/ijerph16030371
  • Lee, K., & Sener, I. N. (2020). Emerging data for pedestrian and bicycle monitoring: Sources and applications. Transportation Research Interdisciplinary Perspectives, doi: 10.1016/j.trip.2020.100095
  • Lee, R. J., Sener, I. N., & Mullins IIIJ. A. (2016). An evaluation of emerging data collection technologies for travel demand modeling: From research to practice. Transportation Letters, 8(4), 181–193. doi: 10.1080/19427867.2015.1106787
  • Lin, Z., & Fan, W. (2020). Bicycle ridership using crowdsourced data: Ordered probit model approach. Journal of Transportation Engineering, Part A: Systems, 146(8), 04020076. doi: 10.1061/JTEPBS.0000399
  • Matt, F., Cole-Hunter, T., Donaire-Gonzalez, D., Kubesch, N., Martínez, D., Carrasco-Turigas, G., & Nieuwenhuijsen, M. (2016). Acute respiratory response to traffic-related air pollution during physical activity performance. Environment International, 97, 45–55. doi: 10.1016/j.envint.2016.10.011
  • McArthur, D. P., & Hong, J. (2019). Visualising where commuting cyclists travel using crowdsourced data. Journal of Transport Geography, 74, 233–241. doi: 10.1016/j.jtrangeo.2018.11.018
  • Milne, D., & Watling, D. (2019). Big data and understanding change in the context of planning transport systems. Journal of Transport Geography, 76, 235–244. doi: 10.1016/j.jtrangeo.2017.11.004
  • Nashad, T., Yasmin, S., Eluru, N., Lee, J., & Abdel-Aty, M. A. (2016). Joint modeling of pedestrian and bicycle crashes: Copula-based approach. Transportation Research Record: Journal of the Transportation Research Board, 2601(1), 119–127. doi: 10.3141/2601-14
  • Ohlms, P. B., Dougald, L. E., & MacKnight, H. E. (2018). Assessing the feasibility of a pedestrian and bicycle count program in Virginia (Report No. VTRC 19-R4). Virginia Transportation Research Council.
  • Orellana, D., & Guerrero, M. L. (2019). Exploring the influence of road network structure on the spatial behaviour of cyclists using crowdsourced data. Environment and Planning B: Urban Analytics and City Science, 46(7), 1314–1330. doi: 10.1177/2399808319863810
  • Osama, A., & Sayed, T. (2017). Investigating the effect of spatial and mode correlations on active transportation safety modelling. Analytic Methods in Accident Research, 16, 60–74. doi:10.1016/j.amar.2017.08.0032213-6657 doi: 10.1016/j.amar.2017.08.003
  • Prato, C. G., Kaplan, S., Rasmussen, T. K., & Hels, T. (2016). Infrastructure and spatial effects on the frequency of cyclist-motorist collisions in the Copenhagen Region. Journal of Transportation Safety & Security, 8(4), 346–360. doi: 10.1080/19439962.2015.1055414
  • Proulx, F., & Pozdnukhov, A. (2017). Bicycle traffic volume estimation using geographically weighted data fusion. Retrieved from http://faculty.ce.berkeley.edu/pozdnukhov/papers/Direct_Demand_Fusion_Cycling.pdf
  • Raihan, M. A., Alluri, P., Wu, W., & Gan, A. (2019). Estimation of bicycle crash modification factors (CMFs) on urban facilities using zero inflated negative binomial models. Accident Analysis and Prevention, 123, 303–313. doi: 10.1016/j.aap.2018.12.009
  • Roll, J. (2018). Bicycle count data: What is it good for? A study of bicycle travel activity in Central Lane Metropolitan Planning Organization (Report No. FHWA-OR-RD-18-16). Oregon Department of Transportation. Retrieved from https://www.oregon.gov/ODOT/Programs/ResearchDocuments/304-76120Bicycle20Counts20Travel20Safety%20Health.pdf
  • Roy, A., Nelson, T. A., Fotheringham, A. S., & Winters, M. (2019). Correcting bias in crowdsourced data to map bicycle ridership of all bicyclists. Urban Science, 3(62), 1–20. doi: 10.3390/urbansci3020062
  • Saad, M., Abdel-Aty, M., Lee, J., & Cai, Q. (2019). Bicycle safety analysis at intersections from crowdsourced data. Transportation Research Record: Journal of the Transportation Research Board, 2673(4), 1–14. doi: 10.1177/0361198119836764
  • Saha, D., Alluri, A., Gan, A., & Wanyang, W. (2018). Spatial analysis of macro-level bicycle crashes using the class of conditional autoregressive models. Accident Analysis and Prevention, 118, 166–177. doi: 10.1016/j.aap.2018.02.014
  • Sanders, R. P., Frackelton, A., Gardner, S., Schneider, R., & Hintze, M. (2017). Ballpark method for estimating pedestrian and bicyclist exposure in Seattle, Washington potential option for resource-constrained cities in an age of big data. Transportation Research Record: Journal of the Transportation Research Board, 2605(1), 32–44. doi: 10.3141/2605-03
  • Selala, M. K., & Musakwa, W. (2016). The potential of Strava data to contribute in non-motorised transport (NMT) planning in Johannesburg. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (pp. 587–594). International Society for Photogrammetry and Remote Sensing.
  • Sener, I. N., Lee, K., Hudson, J. G., Martin, M., & Dai, B. (2019). The challenge of safe and active transportation: Macro-level examination of pedestrian and bicycle crashes in the Austin District. Journal of Transportation Safety & Security, doi: 10.1080/19439962.2019.1645778
  • Skov-Petersen, H., Jacobsen, J. B., Vedel, S. E., Thomas Alexander, S. N., & Rask, S. (2017). Effects of upgrading to cycle highways—An analysis of demand induction, use patterns and satisfaction before and after. Journal of Transport Geography, 64, 204–210. doi: 10.1016/j.jtrangeo.2017.09.011
  • Strava. (2018a). Strava terms of service. Retrieved from https://www.strava.com/legal/terms
  • Strava. (2018b). Strava data changes: Notification from Strava Metro to Strava licensees (communication received through Texas Department of Transportation on July 9, 2018).
  • Strava Metro. (2019). Strava FAQs. Retrieved from https://metro.strava.com/faq/
  • StreetLight Data. (2019). StreetLight Data offers complete, stand-alone dashboard of bicycle and pedestrian transportation metrics. Retrieved from https://www.streetlightdata.com/bicycle-and-pedestrian-metrics-alternative-to-iot-bike-counters/
  • Sun, Y., Du, Y., Wang, Y., & Zhuang, L. (2017). Examining associations of environmental characteristics with recreational cycling behaviour by street-level Strava data. International Journal of Environmental Research and Public Health, 14(644), 1–12. doi: 10.3390/ijerph14060644
  • Sun, Y., & Mobasheri, Y. (2017). Utilizing crowdsourced data for studies of cycling and air pollution exposure: A case study using Strava data. International Journal of Environmental Research and Public Health, 14(274), 1–19. doi: 10.3390/ijerph14030274
  • Sun, Y., Moshfeghi, Y., & Liu, Z. (2017). Exploiting crowdsourced geographic information and GIS for assessment of air pollution exposure during active travel. Journal of Transport and Health, 6, 93–104. doi: 10.1016/j.jth.2017.06.004
  • Turner, S., Benz, R., Hudson, J., Griffin, G., Lasley, P., Dadashova, B., & Das, S. (2019). Improving the amount and availability of pedestrian and bicyclist count data in Texas (Report No. FHWA/TX-19/0-6927-R1). Texas A&M Transportation Institute. Retrieved from https://static.tti.tamu.edu/tti.tamu.edu/documents/0-6927-R1.pdf
  • Turner, S., Sener, I. N., Martin, M., Das, S., Shipp, E., Hampshire, R., … Robinson, S. (2017). Synthesis of methods for estimating pedestrian and bicyclist exposure to risk at areawide levels and on specific transportation facilities (Report No. FHWA SA-17-041). U.S. Department of Transportation. Retrieved from https://safety.fhwa.dot.gov/ped_bike/tools_solve/fhwasa17041/index.cfm
  • Wang, Z., He, S. Y., & Leung, Y. (2018). Applying mobile phone data to travel behaviour research: A literature review. Travel Behaviour and Society, 11, 141–155. doi: 10.1016/j.tbs.2017.02.005
  • Wang, Y., Monsere, C. M., Chen, C., & Wang, H. (2018). Development of a crash risk-scoring tool for pedestrian and bicycle projects in Oregon. Transportation Research Record: Journal of the Transportation Research Board, 2672, 30–39. doi: 10.1177/0361198118794285

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.