814
Views
4
CrossRef citations to date
0
Altmetric
Articles

A systematic scoping review of methods for estimating link-level bicycling volumes

, ORCID Icon, , , ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, & show all
Pages 622-651 | Received 23 Jun 2022, Accepted 02 Nov 2022, Published online: 16 Nov 2022

References

  • Abduljabbar, R. L., Liyanage, S., & Dia, H. (2022). A systematic review of the impacts of the coronavirus crisis on urban transport: Key lessons learned and prospects for future cities. Cities, 127, 103770. https://doi.org/10.1016/j.cities.2022.103770
  • Anderson, M. D., Sharfi, K., & Gholston, S. E. (2006). Direct demand forecasting model for small urban communities using multiple linear regression. Transportation Research Record, 1981(1), 114–117. https://doi.org/10.1177/0361198106198100117
  • Apronti, D. T., & Ksaibati, K. (2018). Four-step travel demand model implementation for estimating traffic volumes on rural low-volume roads in Wyoming. Transportation Planning and Technology, 41(5), 557–571. https://doi.org/10.1080/03081060.2018.1469288
  • Arellana, J., Saltarín, M., Larrañaga, A. M., González, V. I., & Henao, C. A. (2020). Developing an urban bikeability index for different types of cyclists as a tool to prioritise bicycle infrastructure investments. Transportation Research Part A: Policy and Practice, 139, 310–334. https://doi.org/10.1016/j.tra.2020.07.010
  • ATAP. (2022). Australian Transport Assessment and Planning (ATAP) guidelines: Overview of transport modelling. Australian Transport Assessment and Planning (ATAP). https://www.atap.gov.au/tools-techniques/travel-demand-modelling/2-overview
  • Bargh, A., Kelly, J., & Li, V. (2012). Transportation modelling for modal walking and cycling communities. Traffic Engineering & Control, 53(2), 65–70. https://trid.trb.org/view/1136947
  • Bian, J., Li, W., Zhong, S., Lee, C., Foster, M., & Ye, X. (2022). The end-user benefits of smartphone transit apps: A systematic literature review. Transport Reviews, 42(1), 82–101. https://doi.org/10.1080/01441647.2021.1950864
  • Biswas, R. K., Friswell, R., Olivier, J., Williamson, A., & Senserrick, T. (2021). A systematic review of definitions of motor vehicle headways in driver behaviour and performance studies. Transportation Research Part F: Traffic Psychology and Behaviour, 77, 38–54. https://doi.org/10.1016/j.trf.2020.12.011
  • Choi, J., Lee, Y. J., Kim, T., & Sohn, K. (2012). An analysis of Metro ridership at the station-to-station level in Seoul. Transportation, 39(3), 705–722. https://doi.org/10.1007/s11116-011-9368-3
  • Cooper, C. (2016). Spatial network analysis as a low cost land use-transport model of city wide cyclist flows. European Transport Conference 2016. https://aetransport.org/past-etc-papers/conference-papers-2016https://trid.trb.org/view/1452158
  • Cooper, C. (2017). Using spatial network analysis to model pedal cycle flows, risk and mode choice. Journal of Transport Geography, 58, 157–165. https://doi.org/10.1016/j.jtrangeo.2016.12.003
  • Cooper, C. (2018). Predictive spatial network analysis for high-resolution transport modeling, applied to cyclist flows, mode choice, and targeting investment. International Journal of Sustainable Transportation, 12(10), 714–724. https://doi.org/10.1080/15568318.2018.1432730
  • Cooper, C., Harvey, I., Orford, S., & Chiaradia, A. J. F. (2021). Using multiple hybrid spatial design network analysis to predict longitudinal effect of a major city centre redevelopment on pedestrian flows. Transportation, 48(2), 643–672. https://doi.org/10.1007/s11116-019-10072-0
  • Covidence. (2022). Covidence systematic review software, Veritas Health Innovation, Melbourne, Australia. www.covidence.org
  • Dadashova, B., & Griffin, G. P. (2020). Random parameter models for estimating statewide daily bicycle counts using crowdsourced data. Transportation Research Part D: Transport and Environment, 84(11), 390–402. https://doi.org/10.1016/j.trd.2020.102368
  • Dadashova, B., Griffin, G. P., Das, S., Turner, S., & Sherman, B. (2020). Estimation of average annual daily bicycle counts using crowdsourced strava data. Transportation Research Record, 2674(11), 390–402. https://doi.org/10.1177/0361198120946016
  • de Dios Ortúzar, J., & Willumsen, L. G. (2011). Modelling transport. John Wiley & Sons.
  • De Geus, B., De Smet, S., Nijs, J., & Meeusen, R. (2007). Determining the intensity and energy expenditure during commuter cycling. British Journal of Sports Medicine, 41(1), 8–12. https://doi.org/10.1136/bjsm.2006.027615
  • De Hartog, J. J., Boogaard, H., Nijland, H., & Hoek, G. (2010). Do the health benefits of cycling outweigh the risks? Environmental Health Perspectives, 118(8), 1109–1116. https://doi.org/10.1289/ehp.0901747
  • DiGioia, J., Watkins, K. E., Xu, Y., Rodgers, M., & Guensler, R. (2017). Safety impacts of bicycle infrastructure: A critical review. Journal of Safety Research, 61, 105–119. https://doi.org/10.1016/j.jsr.2017.02.015
  • Dill, J., & Gliebe, J. (2008). Understanding and measuring bicycling behavior: A focus on travel time and route choice.
  • Elsevier. (2022a). Ei Compendex. https://www.elsevier.com/solutions/engineering-village/content/compendex
  • Elsevier. (2022b). Engineering village: Empowering engineers to solve the world’s greatest challenges. https://www.elsevier.com/solutions/engineering-village
  • Elsevier. (2022c). Inspec: Engineering research database. https://www.elsevier.com/solutions/engineering-village/content/inspec
  • Ermagun, A., Lindsey, G., & Hadden Loh, T. (2018). Bicycle, pedestrian, and mixed-mode trail traffic: A performance assessment of demand models. Landscape and Urban Planning, 177, 92–102. https://doi.org/10.1016/j.landurbplan.2018.05.006
  • Fagnant, D. J., & Kockelman, K. (2016). A direct-demand model for bicycle counts: The impacts of level of service and other factors. Environment and Planning B: Planning and Design, 43(1), 93–107. https://doi.org/10.1177/0265813515602568
  • Fan, W., & Lin, Z. (2019). Evaluating the potential use of crowdsourced bicycle data in North Carolina. https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CAMMSE-UNCC-2018-UTC-Project-Report-03-Fan-Final.pdfhttps://trid.trb.org/view/1669971
  • Fox, J., & Hess, S. (2010). Review of evidence for temporal transferability of mode-destination models. Transportation Research Record, 2175(1), 74–83. https://doi.org/10.3141/2175-09
  • Gehrke, S. R., & Reardon, T. G. (2021). Direct demand modelling approach to forecast cycling activity for a proposed bike facility. Transportation Planning and Technology, 44(1), 1–15. https://doi.org/10.1080/03081060.2020.1849959
  • Gosse, C. A., & Clarens, A. (2014). Estimating spatially and temporally continuous bicycle volumes by using sparse data. Transportation Research Record, 2443(1), 115–122. https://doi.org/10.3141/2443-13
  • Grabow, M. L., Spak, S. N., Holloway, T., Stone, B., Mednick, A. C., & Patz, J. A. (2012). Air quality and exercise-related health benefits from reduced car travel in the midwestern United States. Environmental Health Perspectives, 120(1), 68–76. https://doi.org/10.1289/ehp.1103440
  • Hankey, S., Lindsey, G., Wang, X., Borah, J., Hoff, K., Utecht, B., & Xu, Z. (2012). Estimating use of non-motorized infrastructure: Models of bicycle and pedestrian traffic in Minneapolis, MN. Landscape and Urban Planning, 107(3), 307–316. https://doi.org/10.1016/j.landurbplan.2012.06.005
  • Hankey, S., Zhang, W., Le, H. T. K., Hystad, P., & James, P. (2021). Predicting bicycling and walking traffic using street view imagery and destination data. Transportation Research Part D: Transport and Environment, 90, 102651. https://doi.org/10.1016/j.trd.2020.102651
  • Haworth, J. (2016). Investigating the potential of activity tracking app data to estimate cycle flows in urban areas. XXIII ISPRS Congress, Prague, Czech Republic.
  • Heppenstall, A. J., Crooks, A. T., See, L. M., & Batty, M. (2011). Agent-based models of geographical systems. Springer Science & Business Media.
  • Hochmair, H. H., Bardin, E., & Ahmouda, A. (2019). Estimating bicycle trip volume for Miami-Dade county from Strava tracking data. Journal of Transport Geography, 75, 58–69. https://doi.org/10.1016/j.jtrangeo.2019.01.013
  • Jacyna, M., Wasiak, M., Kłodawski, M., & Gołe¸biowski, P. (2017). Modelling of bicycle traffic in the cities using VISUM. 10th International Scientific Conference Transbaltica 2017: Transportation Science and Technology.
  • Jahangiri, A., Hasani, M., Sener, I. N., Munira, S., Owens, J., Appleyard, B., Ryan, S., Turner, S. M., & Machiani, S. G. (2019). Data mining to improve planning for pedestrian and bicyclist safety. https://safed.vtti.vt.edu/wp-content/uploads/2020/08/01-003_Final-Research-Report_Final.pdf, https://trid.trb.org/view/1672601. https://doi.org/10.15787/VTT1/IUTNDS
  • Jestico, B., Nelson, T., & Winters, M. (2016). Mapping ridership using crowdsourced cycling data. Journal of Transport Geography, 52, 90–97. https://doi.org/10.1016/j.jtrangeo.2016.03.006
  • Jones, M., Ryan, S., Donlon, J., Ledbetter, L., Ragland, D., & Arnold, L. (2010). Measuring bicycle and pedestrian activity in San Diego County and its relationship to land use, transportation, safety, and facility type.
  • Kamaluddin, N. A., Andersen, C. S., Larsen, M. K., Meltofte, K. R., & Várhelyi, A. (2018). Self-reporting traffic crashes – A systematic literature review. European Transport Research Review, 10(2), 26. https://doi.org/10.1186/s12544-018-0301-0
  • Kaziyeva, D., Loidl, M., & Wallentin, G. (2021). Simulating spatio-temporal patterns of bicycle flows with an agent-based model. ISPRS International Journal of Geo-Information, 10(2), 88. https://doi.org/10.3390/ijgi10020088
  • Kraft, G., & Wohl, M. (1967). New directions for passenger demand analysis and forecasting. Transportation Research, 1(3), i–viii. https://doi.org/10.1016/0041-1647(67)90017-2
  • Kuzmyak, J. R., Walters, J., Bradley, M., & Kockelman, K. M. (2014). Estimating bicycling and walking for planning and project development: A guidebook.
  • Kwigizile, V., Oh, J.-S., & Kwayu, K. (2019). Integrating crowdsourced data with traditionally collected data to enhance estimation of bicycle exposure measure. https://wmich.edu/sites/default/files/attachments/u883/2019/TRCLC_RR_17_03.pdfhttps://wmich.edu/transportationcenter/trclc17-3https://trid.trb.org/view/1483416
  • Le, H. T. K., Buehler, R., & Hankey, S. (2017). Multi-city, national-scale direct-demand models of peak-period bicycle and pedestrian traffic. http://www.matsutc.org/wp-content/uploads/2017/06/Multi-City-Direct-Demand-Models-of-Peak-Period-Bicycle-and-Pedestrian-Traffic.pdfhttps://trid.trb.org/view/1501753
  • Leao, S. Z., & Pettit, C. (2016). Mapping bicycling patterns with an agent-based model, census and crowdsourced data. International Workshop on Agent Based Modelling of Urban Systems.
  • Lee, K., & Sener, I. N. (2020). Emerging data for pedestrian and bicycle monitoring: Sources and applications. Transportation Research Interdisciplinary Perspectives, 4, 100095. https://doi.org/10.1016/j.trip.2020.100095
  • Lin, Z., & Fan, W. (2020a). Bicycle ridership using crowdsourced data: Ordered probit model approach. Journal of Transportation Engineering Part A: Systems, 146(8), 04020076. https://doi.org/10.1061/JTEPBS.0000399
  • Lin, Z., & Fan, W. (2020b). Modeling bicycle volume using crowdsourced data from Strava smartphone application. International Journal of Transportation Science and Technology, 9(4), 334–343. https://doi.org/10.1016/j.ijtst.2020.03.003
  • Lindsay, G., Macmillan, A., & Woodward, A. (2011). Moving urban trips from cars to bicycles: Impact on health and emissions. Australian and New Zealand Journal of Public Health, 35(1), 54–60. https://doi.org/10.1111/j.1753-6405.2010.00621.x
  • Lindsey, G., Wang, J., Pterka, M., & Hankey, S. (2018). Modeling bicyclist exposure to risk and crash risk: Some exploratory studies. http://www.cts.umn.edu/Publications/ResearchReports/reportdetail.html?id=2702https://conservancy.umn.edu/bitstream/handle/11299/199776/CTS%2018-15.pdfhttps://trid.trb.org/view/1540891
  • Liu, B., Bade, D., & Chow, J. Y. J. (2021). Bike count forecast model with multimodal network connectivity measures. Transportation Research Record, 2675(7), 320–334. https://doi.org/10.1177/03611981211021849
  • Liu, F., Evans, J. E., & Rossi, T. (2012). Recent practices in regional modeling of nonmotorized travel. Transportation Research Record, 2303(1), 1–8. https://doi.org/10.3141/2303-01
  • Loidl, M., Werner, C., Heym, L., Kofler, P., & Innerebner, G. (2019). Lifestyles and cycling behavior – Data from a cross-sectional study. Data, 4(4), 140. https://www.mdpi.com/2306-5729/4/4/140 https://doi.org/10.3390/data4040140
  • Lu, T., Mondschein, A., Buehler, R., & Hankey, S. (2018). Adding temporal information to direct-demand models: Hourly estimation of bicycle and pedestrian traffic in Blacksburg, VA. Transportation Research Part D: Transport and Environment, 63, 244–260. https://doi.org/10.1016/j.trd.2018.05.011
  • McDaniel, S., Lowry, M. B., & Dixon, M. (2014). Using origin–destination centrality to estimate directional bicycle volumes. Transportation Research Record, 2430(1), 12–19. https://doi.org/10.3141/2430-02
  • McFadden, D. (1974). The measurement of urban travel demand. Journal of Public Economics, 3(4), 303–328. https://doi.org/10.1016/0047-2727(74)90003-6
  • Mohamad, D., Sinha, K. C., Kuczek, T., & Scholer, C. F. (1998). Annual average daily traffic prediction model for county roads. Transportation Research Record, 1617(1), 69–77. https://doi.org/10.3141/1617-10
  • Munira, S., Sener, I. N., & Zhang, Y. (2021). Estimating bicycle demand in the Austin, Texas area: Role of a Bikeability Index. Journal of Urban Planning and Development, 147(3), 3. https://doi.org/10.1061/(ASCE)UP.1943-5444.0000725
  • Nelson, T., Roy, A., Ferster, C., Fischer, J., Brum-Bastos, V., Laberee, K., Yu, H., & Winters, M. (2021). Generalized model for mapping bicycle ridership with crowdsourced data. Transportation Research Part C: Emerging Technologies, 125, 102981. https://doi.org/10.1016/j.trc.2021.102981
  • Orvin, M. M., Fatmi, M. R., & Chowdhury, S. (2021). Taking another look at cycling demand modeling: A comparison between two cities in Canada and New Zealand. Journal of Transport Geography, 97, 103220. https://doi.org/10.1016/j.jtrangeo.2021.103220
  • Oskarbski, J., Birr, K., & Żarski, K. (2021). Bicycle traffic model for sustainable urban mobility planning. Energies, 14(18), 5970. https://doi.org/10.3390/en14185970
  • Pogodzinska, S., Kiec, M., & D’Agostino, C. (2020). Bicycle traffic volume estimation based on GPS data. Transportation Research Procedia, 45, 874–881. https://doi.org/10.1016/j.trpro.2020.02.081
  • Pritchard, R. (2018). Revealed preference methods for studying bicycle route choice – A systematic review. International Journal of Environmental Research and Public Health, 15(3), 470. https://www.mdpi.com/1660-4601/15/3/470 https://doi.org/10.3390/ijerph15030470
  • Raford, N., & Ragland, D. (2004). Space syntax: Innovative pedestrian volume modeling tool for pedestrian safety. Transportation Research Record, 1878(1), 66–74. https://doi.org/10.3141/1878-09
  • Raford, N., & Ragland, D. (2006). Pedestrian volume modeling for traffic safety and exposure analysis: The case of Boston, Massachusetts.
  • Rasouli, S., & Timmermans, H. (2014). Activity-based models of travel demand: Promises, progress and prospects. International Journal of Urban Sciences, 18(1), 31–60. https://doi.org/10.1080/12265934.2013.835118
  • Romanillos, G., Zaltz Austwick, M., Ettema, D., & De Kruijf, J. (2016). Big data and cycling. Transport Reviews, 36(1), 114–133. https://doi.org/10.1080/01441647.2015.1084067
  • Roy, A., Nelson, T. A., Fotheringham, A. S., & Winters, M. (2019). Correcting bias in crowdsourced data to map bicycle ridership of all bicyclists. Urban Science, 3(2), 62. https://doi.org/10.3390/urbansci3020062
  • Rupi, F., Poliziani, C., & Schweizer, J. (2019). Data-driven bicycle network analysis based on traditional counting methods and GPS traces from smartphone. ISPRS International Journal of Geo-Information, 8(8), 322. https://doi.org/10.3390/ijgi8080322
  • Ryu, S. (2020). A bicycle origin-destination matrix estimation based on a Two-stage procedure. Sustainability, 12(7), 2951. https://doi.org/10.3390/su12072951
  • Ryu, S., Su, J., Chen, A., & Choi, K. (2019). Estimating bicycle demand of a small community. KSCE Journal of Civil Engineering, 23(6), 2690–2701. https://doi.org/10.1007/s12205-019-0415-5
  • Sanders, R. L., Frackelton, A., Gardner, S., Schneider, R., & Hintze, M. (2017). Ballpark method for estimating pedestrian and bicyclist exposure in Seattle, Washington: Potential option for resource-constrained cities in an age of big data. Transportation Research Record, 2605(1), 32–44. https://doi.org/10.3141/2605-03
  • Schoner, J., Proulx, F., Orvañanos, K. K., & Almdale, B. (2021). Prioritizing pedestrian and bicyclist count locations for volume estimation. Transportation Research Record, 2675(10), 277–290. https://doi.org/10.1177/03611981211011164
  • Stinson, M. A., & Bhat, C. R. (2003). Commuter bicyclist route choice: Analysis using a stated preference survey. Transportation Research Record, 1828(1), 107–115. https://doi.org/10.3141/1828-13
  • Strauss, J., Miranda-Moreno, L. F., & Morency, P. (2015). Mapping cyclist activity and injury risk in a network combining smartphone GPS data and bicycle counts. Accident Analysis and Prevention, 83, 132–142. https://doi.org/10.1016/j.aap.2015.07.014
  • Tilahun, N. Y., Levinson, D. M., & Krizek, K. J. (2007). Trails, lanes, or traffic: Valuing bicycle facilities with an adaptive stated preference survey. Transportation Research Part A: Policy and Practice, 41(4), 287–301. https://doi.org/10.1016/j.tra.2006.09.007
  • Turner, S., Sener, I. N., Martin, M. E., Das, S., Hampshire, R. C., Fitzpatrick, K., Molnar, L. J., Colety, M., Robinson, S., & Shipp, E. (2017). Synthesis of methods for estimating pedestrian and bicyclist exposure to risk at areawide levels and on specific transportation facilities.
  • Wallentin, G., & Loidl, M. (2015). Agent-based bicycle traffic model for Salzburg city. GI_Forum Journal for Geographic Information Science, 3, 558–566. https://doi.org/10.1553/giscience2015s558
  • Wang, J., Hankey, S., Wu, X., & Lindsey, A. G. (2016). Monitoring and modeling of urban trail traffic: Validation of direct demand models in Minneapolis, Minnesota, and Columbus, Ohio. Transportation Research Record, 2593(1), 47–59. https://doi.org/10.3141/2593-06
  • Wang, L., Waddell, P., & Outwater, M. L. (2011). Incremental integration of land use and activity-based travel modeling: Workplace choices and travel demand. Transportation Research Record, 2255(1), 1–10. https://doi.org/10.3141/2255-01
  • Wen, L. M., & Rissel, C. (2008). Inverse associations between cycling to work, public transport, and overweight and obesity: Findings from a population based study in Australia. Preventive Medicine, 46(1), 29–32. https://doi.org/10.1016/j.ypmed.2007.08.009
  • Wilensky, U., & Rand, W. (2015). An introduction to agent-based modeling: Modeling natural, social, and engineered complex systems with NetLogo. MIT Press.
  • Winters, M., & Branion-Calles, M. (2017). Cycling safety: Quantifying the under reporting of cycling incidents in Vancouver, British Columbia. Journal of Transport & Health, 7, 48–53. https://doi.org/10.1016/j.jth.2017.02.010
  • Winters, M., Teschke, K., Grant, M., Setton, E. M., & Brauer, M. (2010). How far out of the way will we travel? Built environment influences on route selection for bicycle and car travel. Transportation Research Record, 2190(1), 1–10. https://doi.org/10.3141/2190-01
  • Yin, X., Wu, G., Wei, J., Shen, Y., Qi, H., & Yin, B. (2022). Deep learning on traffic prediction: Methods, analysis, and future directions. IEEE Transactions on Intelligent Transportation Systems, 23(6), 4927–4943. https://doi.org/10.1109/TITS.2021.3054840
  • Zhao, F., & Chung, S. (2001). Estimation of annual average daily traffic in a Florida county using GIS and regression. Transportation Research Record, 1769(1), 113–122. https://doi.org/10.3141/1769-14

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.