604
Views
2
CrossRef citations to date
0
Altmetric
Articles

Spatiotemporal correlation modelling for machine learning-based traffic state predictions: state-of-the-art and beyond

, , &
Pages 780-804 | Received 30 Mar 2022, Accepted 05 Jan 2023, Published online: 30 Jan 2023

References

  • Bogaerts, T., Masegosa, A. D., Angarita-Zapata, J. S., Onieva, E., & Hellinckx, P. (2020). A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data. Transportation Research Part C: Emerging Technologies, 112, 62–77. https://doi.org/10.1016/j.trc.2020.01.010
  • Boukerche, A., Tao, Y., & Sun, P. (2020). Artificial intelligence-based vehicular traffic flow prediction methods for supporting intelligent transportation systems. Computer Networks, 182, 107484. https://doi.org/10.1016/j.comnet.2020.107484
  • Boukerche, A., & Wang, J. (2020). Machine learning-based traffic prediction models for intelligent transportation systems. Computer Networks, 181, 107530. https://doi.org/10.1016/j.comnet.2020.107530
  • Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013). Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203.
  • Cai, L., Janowicz, K., Mai, G. C., Yan, B., & Zhu, R. (2020). Traffic transformer: Capturing the continuity and periodicity of time series for traffic forecasting. Transactions in Gis, 24(3), 736–755. https://doi.org/10.1111/tgis.12644
  • Cai, P., Wang, Y., Lu, G., Chen, P., Ding, C., & Sun, J. (2016). A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting. Transportation Research Part C: Emerging Technologies, 62, 21–34. https://doi.org/10.1016/j.trc.2015.11.002
  • Chen, C., Liu, Z. Y., Wan, S. H., Luan, J. T., & Pei, Q. Q. (2021). Traffic flow prediction based on deep learning in internet of vehicles. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3776–3789. https://doi.org/10.1109/tits.2020.3025856
  • Chen, C. L., Liu, Y. B., Chen, L., & Zhang, C. Q. (2022). Bidirectional spatial-temporal adaptive transformer for urban traffic flow forecasting (Early Access). IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/tnnls.2022.3183903
  • Chen, J., Xu, X., Wu, Y., & Zheng, H. (2018). Gc-lstm: Graph convolution embedded lstm for dynamic link prediction. arXiv preprint arXiv:1812.04206.
  • Chen, S., Meng, Q., & Choi, T.-M. (2022). Transportation research part E – Logistics and transportation review: 25 years in retrospect. Transportation Research Part E-Logistics and Transportation Review, 161, 102709. https://doi.org/10.1016/j.tre.2022.102709
  • Chen, W. Q., Chen, L., Xie, Y., Cao, W., Gao, Y. S., & Feng, X. J. (2020). Multi-range attentive bicomponent graph convolutional network for traffic forecasting. AAAI Conference on Artificial Intelligence. 34th AAAI Conference on Artificial Intelligence, New York, NY.
  • Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
  • Chung, F. R., & Graham, F. C. (1997). Spectral graph theory. American Mathematical Soc.
  • Cordova, J., Sriram, L. M. K., Kocatepe, A., Zhou, Y. X., Ozguven, E. E., & Arghandeh, R. (2019). Combined electricity and traffic short-term load forecasting using bundled causality engine. IEEE Transactions on Intelligent Transportation Systems, 20(9), 3448–3458. https://doi.org/10.1109/tits.2018.2876871
  • Cui, Z., Henrickson, K., Ke, R., & Wang, Y. (2020). Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting. IEEE Transactions on Intelligent Transportation Systems, 21(11), 4883–4894. https://doi.org/10.1109/TITS.2019.2950416
  • Cui, Z. Y., Ke, R. M., Pu, Z. Y., Ma, X. L., & Wang, Y. H. (2020). Learning traffic as a graph: A gated graph wavelet recurrent neural network for network-scale traffic prediction. Transportation Research Part C: Emerging Technologies, 115(15), 102620. https://doi.org/10.1016/j.trc.2020.102620
  • Cui, Z. Y., Lin, L. F., Pu, Z. Y., & Wang, Y. H. (2020). Graph Markov network for traffic forecasting with missing data. Transportation Research Part C: Emerging Technologies, 117(16), 102671. https://doi.org/10.1016/j.trc.2020.102671
  • Dai, G. W., Ma, C. X., & Xu, X. C. (2019). Short-term traffic flow prediction method for urban road sections based on spacetime analysis and GRU. IEEE Access, 7, 143025–143035. https://doi.org/10.1109/access.2019.2941280
  • Dai, X. Y., Fu, R., Zhao, E. M., Zhang, Z., Lin, Y. L., Wang, F. Y., & Li, L. (2019). Deeptrend 2.0: A light-weighted multi-scale traffic prediction model using detrending. Transportation Research Part C: Emerging Technologies, 103, 142–157. https://doi.org/10.1016/j.trc.2019.03.022
  • Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. arXiv preprint arXiv:1606.09375.
  • Do, L. N. N., Vu, H. L., Vo, B. Q., Liu, Z. Y., & Phung, D. (2019). An effective spatial-temporal attention based neural network for traffic flow prediction. Transportation Research Part C: Emerging Technologies, 108, 12–28. https://doi.org/10.1016/j.trc.2019.09.008
  • Ermagun, A., & Levinson, D. (2018). Spatiotemporal traffic forecasting: Review and proposed directions. Transport Reviews, 38(6), 786–814. https://doi.org/10.1080/01441647.2018.1442887
  • Ermagun, A., & Levinson, D. (2019). Spatiotemporal short-term traffic forecasting using the network weight matrix and systematic detrending. Transportation Research Part C-Emerging Technologies, 104, 38–52. https://doi.org/10.1016/j.trc.2019.04.014
  • Fang, Y. C., Zhao, F., Qin, Y. J., Luo, H. Y., & Wang, C. X. (2022). Learning all dynamics: Traffic forecasting via locality-aware spatio-temporal joint transformer (Early Access). IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/tits.2022.3197640
  • Fu, X., Luo, W., Xu, C. Y., & Zhao, X. X. (2020). Short-term traffic speed prediction method for urban road sections based on wavelet transform and gated recurrent unit. Mathematical Problems in Engineering, 2020(13), 3697625. https://doi.org/10.1155/2020/3697625
  • Ge, L., Li, H., Liu, J. L., & Zhou, A. L. (2019). Temporal graph convolutional networks for traffic speed prediction considering external factors. IEEE International Conference on Mobile Data Management. 2019 20th International Conference on Mobile Data Management.
  • George, S., & Santra, A. K. (2020). An improved long short-term memory networks with Takagi-Sugeno fuzzy for traffic speed prediction considering abnormal traffic situation. Computational Intelligence, 36(3), 964–993. https://doi.org/10.1111/coin.12291
  • Gu, Y. L., Lu, W. Q., Qin, L. Q., Li, M., & Shao, Z. Z. (2019). Short-term prediction of lane-level traffic speeds: A fusion deep learning model. Transportation Research Part C: Emerging Technologies, 106, 1–16. https://doi.org/10.1016/j.trc.2019.07.003
  • Gu, Y. L., Lu, W. Q., Xu, X. Y., Qin, L. Q., Shao, Z. Z., & Zhang, H. Y. (2020). An improved Bayesian combination model for short-term traffic prediction with deep learning. IEEE Transactions on Intelligent Transportation Systems, 21(3), 1332–1342. https://doi.org/10.1109/tits.2019.2939290
  • Guo, G., & Yuan, W. (2020). Short-term traffic speed forecasting based on graph attention temporal convolutional networks. Neurocomputing, 410, 387–393. https://doi.org/10.1016/j.neucom.2020.06.001
  • Guo, S., Lin, Y., Feng, N., Song, C., & Wan, H. (2019). Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. Proceedings of the AAAI Conference on Artificial Intelligence.
  • Hanin, B. (2018). Which neural net architectures give rise to exploding and vanishing gradients? Advances in neural information processing systems.
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  • Hou, L., Li, S. E., Yang, B., Wang, Z., & Nakano, K. (2022). Structural transformer improves speed-accuracy trade-off in interactive trajectory prediction of multiple surrounding vehicles (Early Access). IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/tits.2022.3193665
  • Huang, B. H., & Bai, Y. (2019). Traffic flow prediction based on BRNN. In L. Wenzheng & Z. Guomin (Eds.), Proceedings of 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (pp. 320–323).
  • Huang, F. H., Yi, P. Y., Wang, J. C., Li, M. S., Peng, J., & Xiong, X. (2022). A dynamical spatial-temporal graph neural network for traffic demand prediction. Information Sciences, 594, 286–304. https://doi.org/10.1016/j.ins.2022.02.031
  • Jia, T., & Yan, P. G. (2021). Predicting citywide road traffic flow using deep spatiotemporal neural networks. IEEE Transactions on Intelligent Transportation Systems, 22(5), 3101–3111. https://doi.org/10.1109/tits.2020.2979634
  • Karlaftis, M. G., & Vlahogianni, E. I. (2011). Statistical methods versus neural networks in transportation research: Differences, similarities and some insights. Transportation Research Part C: Emerging Technologies, 19(3), 387–399. https://doi.org/10.1016/j.trc.2010.10.004
  • Ke, J., Feng, S., Zhu, Z., Yang, H., & Ye, J. (2021). Joint predictions of multi-modal ride-hailing demands: A deep multi-task multi-graph learning-based approach. Transportation Research Part C: Emerging Technologies, 127, 103063. https://doi.org/10.1016/j.trc.2021.103063
  • Ke, J., Qin, X., Yang, H., Zheng, Z., Zhu, Z., & Ye, J. (2021). Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network. Transportation Research Part C: Emerging Technologies, 122, 102858. https://doi.org/10.1016/j.trc.2020.102858
  • Ke, R. M., Li, W., Cui, Z. Y., & Wang, Y. H. (2020). Two-stream multi-channel convolutional neural network for multi-lane traffic speed prediction considering traffic volume impact. Transportation Research Record: Journal of the Transportation Research Board, 2674(4), 459–470. https://doi.org/10.1177/0361198120911052
  • LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4), 541–551. https://doi.org/10.1162/neco.1989.1.4.541
  • Lee, K., Eo, M., Jung, E., Yoon, Y., & Rhee, W. (2021). Short-term traffic prediction with deep neural networks: A survey. IEEE Access, 9, 54739–54756. https://doi.org/10.1109/ACCESS.2021.3071174
  • Li, H. B., Wang, J. C., Ren, Y. L., & Mao, F. (2021). Intercity online car-hailing travel demand prediction via a spatiotemporal transformer method. Applied Sciences, 11(24), 11750. https://doi.org/10.3390/app112411750
  • Li, L., Su, X., Wang, Y., Lin, Y., Li, Z., & Li, Y. (2015). Robust causal dependence mining in big data network and its application to traffic flow predictions. Transportation Research Part C: Emerging Technologies, 58, 292–307. https://doi.org/10.1016/j.trc.2015.03.003
  • Li, L., Su, X. N., Zhang, Y., Lin, Y. T., & Li, Z. H. (2015). Trend modeling for traffic time series analysis: An integrated study. IEEE Transactions on Intelligent Transportation Systems, 16(6), https://doi.org/10.1109/tits.2015.2457240
  • Li, L. C., Qu, X., Zhang, J., Wang, Y. G., & Ran, B. (2019). Traffic speed prediction for intelligent transportation system based on a deep feature fusion model. Journal of Intelligent Transportation Systems, 23(6), 605–616. https://doi.org/10.1080/15472450.2019.1583965
  • Li, W., Wang, J., Fan, R., Zhang, Y., Guo, Q., Siddique, C., & Ban, X. (2020). Short-term traffic state prediction from latent structures: Accuracy vs. efficiency. Transportation Research Part C: Emerging Technologies, 111, 72–90. https://doi.org/10.1016/j.trc.2019.12.007
  • Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2017). Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926.
  • Li, Z. H., Jiang, S., Li, L., & Li, Y. B. (2019). Building sparse models for traffic flow prediction: An empirical comparison between statistical heuristics and geometric heuristics for Bayesian network approaches. Transportmetrica B-Transport Dynamics, 7(1), 107–123. https://doi.org/10.1080/21680566.2017.1354737
  • Lin, F., Xu, Y. D., Yang, Y., & Ma, H. (2019). A spatial-temporal hybrid model for short-term traffic prediction. Mathematical Problems in Engineering, 12, 4858546. https://doi.org/10.1155/2019/4858546
  • Liu, D. Y., Tang, L. F., Shen, G. J., & Han, X. (2019). Traffic speed prediction: An attention-based method. Sensors, 19(18), 14. https://doi.org/10.3390/s19183836
  • Liu, J., Wu, N. Q., Qiao, Y., & Li, Z. W. (2021). A scientometric review of research on traffic forecasting in transportation. IET Intelligent Transport Systems, 15(1), 1–16. https://doi.org/10.1049/itr2.12024
  • Liu, Q. C., Wang, B. C., & Zhu, Y. Q. (2018). Short-term traffic speed forecasting based on attention convolutional neural network for arterials. Computer-Aided Civil and Infrastructure Engineering, 33(11), 999–1016. https://doi.org/10.1111/mice.12417
  • Liu, Q. Y., Li, J. W., & Lu, Z. M. (2021). ST-Tran: Spatial-temporal transformer for cellular traffic prediction. IEEE Communications Letters, 25(10), 3325–3329. https://doi.org/10.1109/lcomm.2021.3098557
  • Liu, Y., Lyu, C., Zhang, Y., Liu, Z., Yu, W., & Qu, X. (2021). DeepTSP: Deep traffic state prediction model based on large-scale empirical data. Communications in Transportation Research, 1, 100012. https://doi.org/10.1016/j.commtr.2021.100012
  • Luong, M.-T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025.
  • Lv, M. Q., Hong, Z. X., Chen, L., Chen, T. M., Zhu, T. T., & Ji, S. L. (2021). Temporal multi-graph convolutional network for traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3337–3348. https://doi.org/10.1109/tits.2020.2983763
  • Lv, Y., Duan, Y., Kang, W., Li, Z., & Wang, F.-Y. (2014). Traffic flow prediction with big data: A deep learning approach. IEEE Transactions on Intelligent Transportation Systems, 16(2), 865–873. https://doi.org/10.1109/TITS.2014.2345663
  • Ma, D. F., Song, X., & Li, P. (2021). Daily traffic flow forecasting through a contextual convolutional recurrent neural network modeling inter- and intra-day traffic patterns. IEEE Transactions on Intelligent Transportation Systems, 22(5), 2627–2636. https://doi.org/10.1109/tits.2020.2973279
  • Medina-Salgado, B., Sanchez-DelaCruz, E., Pozos-Parra, P., & Sierra, J. E. (2022). Urban traffic flow prediction techniques: A review (Early Access). Sustainable Computing: Informatics and Systems, 35, 100739. https://doi.org/10.1016/j.suscom.2022.100739
  • Miglani, A., & Kumar, N. (2019). Deep learning models for traffic flow prediction in autonomous vehicles: A review, solutions, and challenges. Vehicular Communications, 20, 100184. https://doi.org/10.1016/j.vehcom.2019.100184
  • Niepert, M., Ahmed, M., & Kutzkov, K. (2016). Learning convolutional neural networks for graphs. International conference on machine learning.
  • Niu, K., Zhang, H. Y., Zhou, T., Cheng, C., & Wang, C. (2019). A novel spatio-temporal model for city-scale traffic speed prediction. IEEE Access, 7, 30050–30057. https://doi.org/10.1109/access.2019.2902185
  • Pan, Z., Liang, Y., Wang, W., Yu, Y., Zheng, Y., & Zhang, J. (2019). Urban traffic prediction from spatio-temporal data using deep meta learning. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA. https://doi-org.libproxy1.nus.edu.sg/10.11453292500.3330884
  • Qu, Z. W., Li, H. T., Li, Z. H., & Zhong, T. (2022). Short-term traffic flow forecasting method with M-B-LSTM hybrid network. IEEE Transactions on Intelligent Transportation Systems, 23(1), 225–235. https://doi.org/10.1109/tits.2020.3009725
  • Su, J., Jin, Z. F., Ren, J., Yang, J. D., & Liu, Y. (2022). GDFormer: A graph diffusing attention based approach for traffic flow prediction. Pattern Recognition Letters, 156, 126–132. https://doi.org/10.1016/j.patrec.2022.03.005
  • Sun, P., Boukerche, A., & Tao, Y. (2020). SSGRU: A novel hybrid stacked GRU-based traffic volume prediction approach in a road network. Computer Communications, 160, 502–511. https://doi.org/10.1016/j.comcom.2020.06.028
  • Sun, T., Yang, C. W., Han, K., Ma, W. J., & Zhang, F. (2020). Bidirectional spatial-temporal network for traffic prediction with multisource data. Transportation Research Record: Journal of the Transportation Research Board, 2674(8), 78–89. https://doi.org/10.1177/0361198120927393
  • Tang, J., & Zeng, J. (2021). Spatiotemporal gated graph attention network for urban traffic flow prediction based on license plate recognition data. Computer-Aided Civil and Infrastructure Engineering, 37(1), 3–23. https://doi.org/10.1111/mice.12688
  • Tedjopurnomo, D. A., Bao, Z., Zheng, B., Choudhury, F., & Qin, A. (2020). A survey on modern deep neural network for traffic prediction: Trends, methods and challenges. IEEE Transactions on Knowledge and Data Engineering, 34(4), 1544–1561. https://doi.org/10.1109/TKDE.2020.3001195
  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł, & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems.
  • Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.
  • Veres, M., & Moussa, M. (2019). Deep learning for intelligent transportation systems: A survey of emerging trends. IEEE Transactions on Intelligent Transportation Systems, 21(8), 3152–3168. https://doi.org/10.1109/TITS.2019.2929020
  • Vlahogianni, E. I., Karlaftis, M. G., & Golias, J. C. (2014). Short-term traffic forecasting: Where we are and where we’re going. Transportation Research Part C: Emerging Technologies, 43, 3–19. https://doi.org/10.1016/j.trc.2014.01.005
  • Wang, J., Deng, W., & Guo, Y. (2014). New Bayesian combination method for short-term traffic flow forecasting. Transportation Research Part C: Emerging Technologies, 43, 79–94. https://doi.org/10.1016/j.trc.2014.02.005
  • Wang, Y., Zhang, D., Liu, Y., Dai, B., & Lee, L. H. (2019). Enhancing transportation systems via deep learning: A survey. Transportation Research Part C: Emerging Technologies, 99, 144–163. https://doi.org/10.1016/j.trc.2018.12.004
  • Wu, Y. K., Tan, H. C., Qin, L. Q., Ran, B., & Jiang, Z. X. (2018). A hybrid deep learning based traffic flow prediction method and its understanding. Transportation Research Part C: Emerging Technologies, 90, 166–180. https://doi.org/10.1016/j.trc.2018.03.001
  • Xie, Y. L., Niu, J. J., Zhang, Y., & Ren, F. (2022). Multisize patched spatial-temporal transformer network for short-and long-term crowd flow prediction. IEEE Transactions on Intelligent Transportation Systems, 23(11), 21548–21568. https://doi.org/10.1109/tits.2022.3186707
  • Xu, D. W., Wei, C. C., Peng, P., Xuan, Q., & Guo, H. F. (2020). GE-GAN: A novel deep learning framework for road traffic state estimation. Transportation Research Part C: Emerging Technologies, 117(13), 102635. https://doi.org/10.1016/j.trc.2020.102635
  • Xu, M., Dai, W., Liu, C., Gao, X., Lin, W., Qi, G.-J., & Xiong, H. (2020b). Spatial-temporal transformer networks for traffic flow forecasting. arXiv preprint arXiv:2001.02908.
  • Yan, H. Y., Ma, X. L., & Pu, Z. Y. (2022). Learning dynamic and hierarchical traffic spatiotemporal features with transformer. IEEE Transactions on Intelligent Transportation Systems, 23(11), 22386–22399. https://doi.org/10.1109/tits.2021.3102983
  • Yao, H., Wu, F., Ke, J., Tang, X., Jia, Y., Lu, S., Gong, P., Ye, J., & Li, Z. (2018). Deep multi-view spatial-temporal network for taxi demand prediction. Proceedings of the AAAI Conference on Artificial Intelligence.
  • Yao, R. H., Zhang, W. S., & Zha, L. H. (2020). Hybrid methods for short-term traffic flow prediction based on ARIMA-GARCH model and wavelet neural network. Journal of Transportation Engineering Part a-Systems, 146(8), 13. https://doi.org/10.1061/jtepbs.0000388
  • Ye, J., Zhao, J., Ye, K., & Xu, C. (2020). How to build a graph-based deep learning architecture in traffic domain: A survey. IEEE Transactions on Intelligent Transportation Systems, 23(5), 3904–3924. https://doi.org/10.1109/TITS.2020.3043250
  • Ye, X., Fang, S., Sun, F., Zhang, C. X., & Xiang, S. M. (2022). Meta graph transformer: A novel framework for spatial-temporal traffic prediction. Neurocomputing, 491, 544–563. https://doi.org/10.1016/j.neucom.2021.12.033
  • Yu, B., Yin, H., & Zhu, Z. (2017). Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875.
  • Yu, J. J. Q., Markos, C., & Zhang, S. Y. (2022). Long-term urban traffic speed prediction with deep learning on graphs. IEEE Transactions on Intelligent Transportation Systems, 23(7), 7359–7370. https://doi.org/10.1109/tits.2021.3069234
  • Yu, X., Sun, L., Yan, Y., & Liu, G. (2021). A short-term traffic flow prediction method based on spatial–temporal correlation using edge computing. Computers & Electrical Engineering, 93, 107219. https://doi.org/10.1016/j.compeleceng.2021.107219
  • Zang, D., Ling, J. W., Wei, Z. H., Tang, K. S., & Cheng, J. J. (2019). Long-term traffic speed prediction based on multiscale spatio-temporal feature learning network. IEEE Transactions on Intelligent Transportation Systems, 20(10), 3700–3709. https://doi.org/10.1109/tits.2018.2878068
  • Zhang, C. H., Yu, J. J. Q., & Liu, Y. (2019). Spatial-temporal graph attention networks: A deep learning approach for traffic forecasting. IEEE Access, 7, 166246–166256. https://doi.org/10.1109/access.2019.2953888
  • Zhang, H., Zou, Y. J., Yang, X. X., & Yang, H. (2022). A temporal fusion transformer for short-term freeway traffic speed multistep prediction. Neurocomputing, 500, 329–340. https://doi.org/10.1016/j.neucom.2022.05.083
  • Zhang, K., He, F., Zhang, Z. C., Lin, X., & Li, M. (2021). Graph attention temporal convolutional network for traffic speed forecasting on road networks. Transportmetrica B: Transport Dynamics, 9(1), 153–171. https://doi.org/10.1080/21680566.2020.1822765
  • Zhang, M. H., Yao, B. Z., Gang, L. H., & Chen, G. (2013). Accurate multisteps traffic flow prediction based on SVM. Mathematical Problems in Engineering, 2013, 418303. https://doi.org/10.1155/2013/418303
  • Zhang, N., Guan, X. F., Cao, J., Wang, X. L., & Wu, H. Y. (2019). Wavelet-HST: A wavelet-based higher-order spatio-temporal framework for urban traffic speed prediction. IEEE Access, 7, 118446–118458. https://doi.org/10.1109/access.2019.2936938
  • Zhang, S., Tong, H., Xu, J., & Maciejewski, R. (2019). Graph convolutional networks: A comprehensive review. Computational Social Networks, 6(1), 11. https://doi.org/10.1186/s40649-019-0069-y
  • Zhang, S., Zhou, L., Chen, X., Zhang, L., Li, L., & Li, M. (2020). Network-wide traffic speed forecasting: 3D convolutional neural network with ensemble empirical mode decomposition. Computer-Aided Civil and Infrastructure Engineering, 35(10), 1132–1147. https://doi.org/10.1111/mice.12575
  • Zhang, W. B., Yu, Y. H., Qi, Y., Shu, F., & Wang, Y. H. (2019). Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning. Transportmetrica A: Transport Science, 15(2), 1688–1711. https://doi.org/10.1080/23249935.2019.1637966
  • Zhang, X. Y., Xu, Y., & Shao, Y. Z. (2022). Forecasting traffic flow with spatial-temporal convolutional graph attention networks. Neural Computing & Applications, 34(18), 15457–15479. https://doi.org/10.1007/s00521-022-07235-z
  • Zhang, Z., He, F., Lin, X., Wang, Y., & Li, M. (2021). High-performance traffic speed forecasting based on spatiotemporal clustering of road segments. IET Intelligent Transport Systems, 15(2), 225–234. https://doi.org/10.1049/itr2.12016
  • Zhang, Z. C., Li, M., Lin, X., Wang, Y. H., & He, F. (2019). Multistep speed prediction on traffic networks: A deep learning approach considering spatio-temporal dependencies. Transportation Research Part C: Emerging Technologies, 105, 297–322. https://doi.org/10.1016/j.trc.2019.05.039
  • Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M., & Li, H. (2020). T-GCN: A temporal graph convolutional network for traffic prediction. IEEE Transactions on Intelligent Transportation Systems, 21(9), 3848–3858. https://doi.org/10.1109/TITS.2019.2935152
  • Zheng, C. P., Fan, X. L., Wen, C. L., Chen, L. B., Wang, C., & Li, J. (2020). DeepSTD: Mining spatio-temporal disturbances of multiple context factors for citywide traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems, 21(9), 3744–3755. https://doi.org/10.1109/tits.2019.2932785
  • Zheng, J. H., & Huang, M. F. (2020). Traffic flow forecast through time series analysis based on deep learning. IEEE Access, 8, 82562–82570. https://doi.org/10.1109/access.2020.2990738
  • Zheng, Z. B., Yang, Y. T., Liu, J. H., Dai, H. N., & Zhang, Y. (2019). Deep and embedded learning approach for traffic flow prediction in urban informatics. IEEE Transactions on Intelligent Transportation Systems, 20(10), 3927–3939. https://doi.org/10.1109/tits.2019.2909904
  • Zhou, F., Yang, Q., Zhang, K., Trajcevski, G., Zhong, T., & Khokhar, A. (2020a). Reinforced spatiotemporal attentive graph neural networks for traffic forecasting. IEEE Internet of Things Journal, 7(7), 6414–6428. https://doi.org/10.1109/JIOT.2020.2974494
  • Zhou, L. X., Zhang, S. C., Yu, J. R., & Chen, X. Q. (2020b). Spatial-temporal deep tensor neural networks for large-scale urban network speed prediction. IEEE Transactions on Intelligent Transportation Systems, 21(9), 3718–3729. https://doi.org/10.1109/tits.2019.2932038
  • Zhu, D. F., Shen, G. J., Liu, D. Y., Chen, J. J., & Zhang, Y. J. (2019). FCG-ASpredictor: An approach for the prediction of average speed of road segments with floating car GPS data. Sensors, 19(22), 21. https://doi.org/10.3390/s19224967
  • Zhu, L., Yu, F., Wang, Y., Ning, B., & Tang, T. (2019). Big data analytics in intelligent transportation systems: A survey. IEEE Transactions on Intelligent Transportation Systems, 20(1), 383–398. https://doi.org/10.1109/TITS.2018.2815678
  • Zhu, S., & Meng, Q. (2022). What can we learn from autonomous vehicle collision data on crash severity? A cost-sensitive CART approach. Accident Analysis and Prevention, 174, 106769. https://doi.org/10.1016/j.aap.2022.106769

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.