765
Views
1
CrossRef citations to date
0
Altmetric
Articles

Characterising the flexibility of electric vehicle charging strategies: a systematic review and assessment

&
Pages 1237-1262 | Received 14 Jun 2022, Accepted 10 May 2023, Published online: 29 May 2023

References

  • Al Essa, M., & Cipcigan, L. (2016). Reallocating charging loads of electric vehicles in distribution networks. Applied Sciences, 6(2), 53. https://doi.org/10.3390/app6020053
  • Ardakanian, O., Keshav, S., & Rosenberg, C. (2014). Real-time distributed control for smart electric vehicle chargers: From a static to a dynamic study. IEEE Transactions on Smart Grid, 5(5), 2295–2305. https://doi.org/10.1109/TSG.2014.2327203
  • Arias, A., Granada, M., & Castro, C. A. (2017). Optimal probabilistic charging of electric vehicles in distribution systems. IET Electrical Systems in Transportation, 7(3), 246–251. https://doi.org/10.1049/iet-est.2016.0072
  • Baccino, F., Grillo, S., Massucco, S., & Silvestro, F. (2015). A two-stage margin-based algorithm for optimal plug-in electric vehicles scheduling. IEEE Transactions on Smart Grid, 6(2), 759–766. https://doi.org/10.1109/TSG.2014.2380826
  • Cao, C., Wang, L., & Chen, B. (2016). Mitigation of the impact of high plug-in electric vehicle penetration on residential distribution grid using smart charging strategies. Energies, 9(12), 1024. https://doi.org/10.3390/en9121024
  • Cao, C., Wu, Z., & Chen, B. (2020). Electric vehicle–grid integration with voltage regulation in radial distribution networks. Energies, 13(7), 1802. https://doi.org/10.3390/en13071802
  • Carrión, M., Zárate-Miñano, R., & Domínguez, R. (2020). Integration of electric vehicles in low-voltage distribution networks considering voltage management. Energies, 13(16), 4125. https://doi.org/10.3390/en13164125
  • Chan, C.-M., Lu, C.-N., & Lo, Y. L. (2015). Optimal use of existing distribution feeders to accommodate transportation electrification. IEEE Transactions on Intelligent Transportation Systems, 16(4), 1941–1950. https://doi.org/10.1109/TITS.2014.2385799
  • Chen, N., Tan, C. W., & Quek, T. Q. S. (2014). Electric vehicle charging in smart grid: Optimality and valley-filling algorithms.
  • Cheng, L., Chang, Y., Wu, Q., Lin, W., & Singh, C. (2014). Evaluating charging service reliability for plug-in EVs from the distribution network aspect. IEEE Transactions on Sustainable Energy, 5(4), 1287–1296. https://doi.org/10.1109/TSTE.2014.2348575
  • Crozier, C., Deakin, M., Morstyn, T., & McCulloch, M. (2020). Coordinated electric vehicle charging to reduce losses without network impedances. IET Smart Grid, 3(5), 677–685. https://doi.org/10.1049/iet-stg.2019.0216
  • de Hoog, J., Alpcan, T., Brazil, M., Thomas, D. A., & Mareels, I. (2015). Optimal charging of electric vehicles taking distribution network constraints into account. IEEE Transactions on Power Systems, 30(1), 365–375. https://doi.org/10.1109/TPWRS.2014.2318293
  • Deller, D., Giulietti, M., Loomes, G., Waddams Price, C., Moniche, A., & Young Jeon, J. (2021). Switching energy suppliers: It’s not all about the money. The Energy Journal, 42(3), 3. https://doi.org/10.5547/01956574.42.3.ddel
  • Eid, C., Codani, P., Perez, Y., Reneses, J., & Hakvoort, R. (2016). Managing electric flexibility from distributed energy resources: A review of incentives for market design. Renewable and Sustainable Energy Reviews, 64, 237–247. https://doi.org/10.1016/j.rser.2016.06.008
  • Ensslen, A., Ringler, P., Dörr, L., Jochem, P., Zimmermann, F., & Fichtner, W. (2018). Incentivizing smart charging: Modeling charging tariffs for electric vehicles in German and French electricity markets. Energy Research & Social Science, 42, 112–126. https://doi.org/10.1016/j.erss.2018.02.013
  • Flath, C. M., Ilg, J. P., Gottwalt, S., Schmeck, H., & Weinhardt, C. (2014). Improving electric vehicle charging coordination through area pricing. Transportation Science, 48(4), 619–634. http://www.jstor.org/stable/43666946
  • Flexibility in the electricity system: Status quo, obstacles and approaches for a better use of flexibility. (2017).
  • Gao, S., & Jia, H. (2019). Integrated configuration and optimization of electric vehicle aggregators for charging facilities in power networks with renewables. IEEE Access, 7, 84690–84700. https://doi.org/10.1109/ACCESS.2019.2924029
  • García Veloso, C., Rauma, K., Fernández Orjuela, J., & & Rehtanz, C. (2020). Real-time agent-based control of plug-in electric vehicles for voltage and thermal management of LV networks: Formulation and HIL validation. IET Generation, Transmission & Distribution, 14(11), 2169–2180. https://doi.org/10.1049/iet-gtd.2018.6547
  • García-Villalobos, J., Zamora, I., San Martín, J. I., Asensio, F. J., & Aperribay, V. (2014). Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches. Renewable and Sustainable Energy Reviews, 38, 717–731. https://doi.org/10.1016/j.rser.2014.07.040
  • Ghazvini, M., Lipari, G., Pau, M., Ponci, F., Monti, A., Soares, J., Castro, R., & Vale, Z. (2019). Congestion management in active distribution networks through demand response implementation. Sustainable Energy, Grids and Networks, 17, 100185. https://doi.org/10.1016/j.segan.2018.100185
  • Ghiasnezhad Omran, N., & & Filizadeh, S. (2017). A semi-cooperative decentralized scheduling scheme for plug-in electric vehicle charging demand. International Journal of Electrical Power & Energy Systems, 88, 119–132. https://doi.org/10.1016/j.ijepes.2016.12.008
  • Given, L. (2008). The SAGE encyclopedia of qualitative research methods. https://methods.sagepub.com/reference/sage-encyc-qualitative-research-methods.
  • Grau Unda, I., Papadopoulos, P., Skarvelis-Kazakos, S., Cipcigan, L. M., Jenkins, N., & Zabala, E. (2014). 2014_Grau Unda. Electric Power Systems Research, 110, 172–179. https://doi.org/10.1016/j.epsr.2014.01.014
  • Habib, S., Kamran, M., & Rashid, U. (2015). Impact analysis of vehicle-to-grid technology and charging strategies of electric vehicles on distribution networks – A review. Journal of Power Sources, 277, 205–214. https://doi.org/10.1016/j.jpowsour.2014.12.020
  • Hajizadeh, A., & Kikhavani, M. R. (2018). Coordination of bidirectional charging for plug-in electric vehicles in smart distribution systems. Electrical Engineering, 100(2), 1085–1096. https://doi.org/10.1007/s00202-017-0569-4
  • Hua, L., Wang, J., & Zhou, C. (2014). Adaptive electric vehicle charging coordination on distribution network. IEEE Transactions on Smart Grid, 5(6), 2666–2675. https://doi.org/10.1109/TSG.2014.2336623
  • Jabalameli, N., Su, X., & Deilami, S. (2019). An online coordinated charging/discharging strategy of plug-in electric vehicles in unbalanced active distribution networks with ancillary reactive service in the energy market. Energies, 12(7), 1350. https://doi.org/10.3390/en12071350
  • Jalilzadeh Hamidi, R., & & Livani, H. (2017). Myopic real-time decentralized charging management of plug-in hybrid electric vehicles. Electric Power Systems Research, 143, 522–532. https://doi.org/10.1016/j.epsr.2016.11.002
  • Kisacikoglu, M. C., Erden, F., & Erdogan, N. (2018). Distributed control of PEV charging based on energy demand forecast. IEEE Transactions on Industrial Informatics, 14(1), 332–341. https://doi.org/10.1109/TII.2017.2705075
  • Masoum, A. S., Deilami, S., Moses, P. S., Masoum, M., & Abu-Siada, A. (2011). Smart load management of plug-in electric vehicles in distribution and residential networks with charging stations for peak shaving and loss minimisation considering voltage regulation. IET Generation, Transmission & Distribution, 5(8), 877. https://doi.org/10.1049/iet-gtd.2010.0574
  • Mets, K., D’hulst, R., & Develder, C. (2012). Comparison of intelligent charging algorithms for electric vehicles to reduce peak load and demand variability in a distribution grid.
  • Metz, M., & Doetsch, C. (2012). Electric vehicles as flexible loads – A simulation approach using empirical mobility data. Energy, 48(1), 369–374. https://doi.org/10.1016/j.energy.2012.04.014
  • Morvaj, B., Knezovic, K., Evins, R., & Marinelli, M. (2016). Integrating multi-domain distributed energy systems with electric vehicle PQ flexibility: Optimal design and operation scheduling for sustainable low-voltage distribution grids. Sustainable Energy, Grids and Networks, 8, https://doi.org/10.1016/j.segan.2016.10.001
  • Neaimeh, M., Wardle, R., Jenkins, A. M., Yi, J., Hill, G., Lyons, P. F., Hübner, Y., Blythe, P. T., & Taylor, P. C. (2015). A probabilistic approach to combining smart meter and electric vehicle charging data to investigate distribution network impacts. Applied Energy, 157, 688–698. https://doi.org/10.1016/j.apenergy.2015.01.144
  • Nimalsiri, N. I., Mediwaththe, C. P., Ratnam, E. L., Shaw, M., Smith, D. B., & Halgamuge, S. K. (2020). A survey of algorithms for distributed charging control of electric vehicles in smart grid. IEEE Transactions on Intelligent Transportation Systems, 21(11), 4497–4515. https://doi.org/10.1109/TITS.2019.2943620
  • Olivella-Rosell, P., Lloret-Gallego, P., Munné-Collado, Í, Villafafila-Robles, R., Sumper, A., Ottessen, S., Rajasekharan, J., & Bremdal, B. (2018). Local flexibility market design for aggregators providing multiple flexibility services at distribution network level. Energies, 11(4), 822. https://doi.org/10.3390/en11040822
  • Olivella-Rosell, P., Villafafila-Robles, R., Sumper, A., & Bergas-Jané, J. (2015). Probabilistic agent-based model of electric vehicle charging demand to analyse the impact on distribution networks. Energies, 8(5), 4160–4187. https://doi.org/10.3390/en8054160
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372, https://doi.org/10.1136/bmj.n71
  • Papadopoulos, P., Skarvelis-Kazakos, S., Grau, I., Cipcigan, L. M., & Jenkins, N. (2012). Electric vehicles’ impact on British distribution networks. IET Electrical Systems in Transportation, 2(3), 91. https://doi.org/10.1049/iet-est.2011.0023
  • Ramakrishna Reddy, K., Meikandasivam, S., & & Vijayakumar, D. (2019). A novel strategy for maximization of plug-in electric vehicle’s storage utilization for grid support with consideration of customer flexibility. Electric Power Systems Research, 170, 158–175. https://doi.org/10.1016/j.epsr.2018.12.031
  • Rezaei, P., Frolik, J., & Hines, P. D. H. (2014). Packetized plug-in electric vehicle charge management. IEEE Transactions on Smart Grid, 5(2), 642–650. https://doi.org/10.1109/TSG.2013.2291384
  • Richardson, P., Flynn, D., & Keane, A. (2011). Optimal charging of electric vehicles in low voltage distribution systems. IEEE Transactions on Power Systems, 27(1), 268–279. https://doi.org/10.1109/TPWRS.2011.2158247
  • Richardson, P., Flynn, D., & Keane, A. (2012). Local versus centralized charging strategies for electric vehicles in low voltage distribution systems. IEEE Transactions on Smart Grid, 3(2), 1020–1028. https://doi.org/10.1109/TSG.2012.2185523
  • Rostami, M–A, Kavousi-Fard, A., & Niknam, T. (2015). Expected cost minimization of smart grids with plug-in hybrid electric vehicles using optimal distribution feeder reconfiguration. IEEE Transactions on Industrial Informatics, 11(2), 388–397. https://doi.org/10.1109/TII.2015.2395957
  • Sabillon-Antunez, C., Melgar-Dominguez, O. D., Franco, J. F., Lavorato, M., & Rider, M. J. (2017). Volt-VAr control and energy storage device operation to improve the electric vehicle charging coordination in unbalanced distribution networks. IEEE Transactions on Sustainable Energy, 8(4), 1560–1570. https://doi.org/10.1109/TSTE.2017.2695195
  • Sadeghianpourhamami, N., Refa, N., Strobbe, M., & Develder, C. (2018). Quantitive analysis of electric vehicle flexibility: A data-driven approach. International Journal of Electrical Power & Energy Systems, 95, https://doi.org/10.1016/j.ijepes.2017.09.007
  • Shao, S., Pipattanasomporn, M., & Rahman, S. (2012). Grid integration of electric vehicles and demand response with customer choice. IEEE Transactions on Smart Grid, 3(1), 543–550. https://doi.org/10.1109/TSG.2011.2164949
  • Spiliotis, K., Ramos Gutierrez, A. I., & Belmans, R. (2016). Demand flexibility versus physical network expansions in distribution grids. Applied Energy, 182, 613–624. https://doi.org/10.1016/j.apenergy.2016.08.145
  • Spitzer, M., Schlund, J., Apostolaki-Iosifidou, E., & Pruckner, M. (2019). Optimized integration of electric vehicles in low voltage distribution grids. Energies, 12(21), 4059. https://doi.org/10.3390/en12214059
  • Sun, W., Neumann, F., & Harrison, G. P. (2020). Robust scheduling of electric vehicle charging in LV distribution networks under uncertainty. IEEE Transactions on Industry Applications, 56(5), 5785–5795. https://doi.org/10.1109/TIA.2020.2983906
  • Sundstrom, O., & Binding, C. (2012). Flexible charging optimization for electric vehicles considering distribution grid constraints. IEEE Transactions on Smart Grid, 3(1), 26–37. https://doi.org/10.1109/TSG.2011.2168431
  • Suyono, H., Rahman, M. T., Mokhlis, H., Othman, M., Illias, H. A., & Mohamad, H. (2019). Optimal scheduling of plug-in electric vehicle charging including time-of-use tariff to minimize cost and system stress. Energies, 12(8), 1500. https://doi.org/10.3390/en12081500
  • Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science (New York, N.Y.), 211(4481), 453–458. https://doi.org/10.1126/science.7455683
  • Ul-Haq, A., Cecati, C., Strunz, K., & Abbasi, E. (2015). Impact of electric vehicle charging on voltage unbalance in an urban distribution network. Intelligent Industrial Systems, 1(1), 51–60. https://doi.org/10.1007/s40903-015-0005-x
  • Veldman, E., & Verzijlbergh, R. A. (2015). Distribution grid impacts of smart electric vehicle charging from different perspectives. IEEE Transactions on Smart Grid, 6(1), 333–342. https://doi.org/10.1109/TSG.2014.2355494
  • Verzijlbergh, R. A., Grond, M. O. W., Lukszo, Z., Slootweg, J. G., & Ilic, M. D. (2012). Network impacts and cost savings of controlled EV charging. IEEE Transactions on Smart Grid, 3(3), 1203–1212. https://doi.org/10.1109/TSG.2012.2190307
  • Weckx, S., D'Hulst, R., Claessens, B., & Driesensam, J. (2014). Multi-agent charging of electric vehicles respecting distribution transformer loading and voltage limits. IEEE Transactions on Smart Grid, 5(6), 2857–2867. https://doi.org/10.1109/TSG.2014.2345886
  • Xiang, Y., Jiang, Z., Gu, C., Teng, F., Wei, X., & Wang, Y. (2019). Electric vehicle charging in smart grid: A spatial-temporal simulation method. Energy, 189, 116221. https://doi.org/10.1016/j.energy.2019.116221
  • Yu, Y., Chen, B., Huang, K., Wang, X., & Wang, D. (2014). Environmental impact assessment and end-of-life treatment policy analysis for li-ion batteries and Ni-MH batteries. International Journal of Environmental Research and Public Health, 11(3), 3185–3198. https://doi.org/10.3390/ijerph110303185
  • Zhao, J., Wang, J., Xu, Z., Wang, C., Wan, C., & Chen, C. (2017). Distribution network electric vehicle hosting capacity maximization: A chargeable region optimization model. IEEE Transactions on Power Systems, 32(5), 4119–4130. https://doi.org/10.1109/TPWRS.2017.2652485
  • Zöphel, C., Schreiber, S., Müller, T., & Möst, D. (2018). Which flexibility options facilitate the integration of intermittent renewable energy sources in electricity systems? Current Sustainable/Renewable Energy Reports, 5(1), 37–44. https://doi.org/10.1007/s40518-018-0092-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.