3,914
Views
0
CrossRef citations to date
0
Altmetric
Articles

A systematic review of adaption to climate change impacts in the aviation sector

ORCID Icon, ORCID Icon & ORCID Icon
Pages 8-33 | Received 01 Aug 2022, Accepted 22 May 2023, Published online: 07 Jun 2023

References

  • Airport Cooperative Research Program. (2012). Synthesis 33: Airport climate adaptation and resilience. The National Academies Press.
  • Airport Cooperative Research Program. (2014). Synthesis 147: Climate change adaptation planning: Risk assessment for airports. The National Academies Press.
  • Airport Cooperative Research Program. (2018). ACRP synthesis 188: Using existing airport management systems to manage climate risk. The National Academies Press.
  • Airports Council International. (2018). Policy brief: Airports’ resilience and adaptation to climate change. Airports Council International.
  • Airports Council International. (2020). Climate change resilience and adaptation survey report. Airports Council International.
  • Ambrosio, N., Kim, Y. H., Swann, S., & Wang, Z. (2020). Addressing climate risk in financial decision making. In R. Colker (Ed.), Optimizing community infrastructure (pp. 123–142). Butterworth-Heinemann.
  • ATAG. (2021). Waypoint 2050: Balancing growth in connectivity with a comprehensive global air transport response to the climate emergency: A vision of net-zero aviation by mid-century. Air Transport Action Group.
  • Beaulac, I., & Doré, G. (2007). Development of a new heat extraction method to reduce permafrost degradation under roads and airfields. In M. Davis & J. E. Zufelt (Eds.), Current practices in cold regions engineering – Proceedings of the 13th international conference on cold regions engineering (pp. 1–12). American Society of Civil Engineers.
  • Bilodeau, J. P., Verreault, J., & Dore, G. (2019). Assessment of the physical and mechanical properties of permafrost in Nunavik, Quebec, Canada. In J. P. Bilodeau, D. F. Nadeau, D. Fortier, & D. Conciatori (Eds.), Proceedings of the 18th international conference on cold regions engineering and the 8th Canadian permafrost conference (pp. 17–25). American Society of Civil Engineers.
  • Biondi, R., & Corradini, S. (2020). Editorial for special issue “Convective and Volcanic Clouds (CVC)”. Remote Sensing, 12(13), 2080. https://doi.org/10.3390/rs12132080
  • Blacka, M., Flocard, F., Rayner, D., & Rahman, P. (2013). A case study of vulnerability to cyclones and climate change: Avarua, Rarotonga. In Coasts and ports 2013 – 21st Australasian coastal and ocean engineering conference and the 14th Australasian port and harbour conference (pp. 91–96). Engineers Australia.
  • Blackwell, B. F., DeVault, T. L., Fernández-Juricic, E., & Dolbeer, R. A. (2009). Wildlife collisions with aircraft: A missing component of land-use planning for airports. Landscape and Urban Planning, 93(1), 1–9. https://doi.org/10.1016/j.landurbplan.2009.07.005
  • Boon, E., Wright, S. J., Biesbroek, R., Goosen, H., & Ludwig, F. (2022). Successful climate services for adaptation: What we know, don’t know and need to know. Climate Services, 27, 100314. https://doi.org/10.1016/j.cliser.2022.100314
  • Borsky, S., & Unterberger, C. (2019). Bad weather and flight delays: The impact of sudden and slow onset weather events. Economics of Transportation, 18, 10–26. https://doi.org/10.1016/j.ecotra.2019.02.002
  • Boucher, M., & Guimond, A. (2012). Assessing the vulnerability of Ministère des Transports du Québec infrastructures in Nunavik in a context of thawing permafrost and development of an adaptation strategy. In B. Morse & G. Doré (Eds.), Development in a changing cold environment – Proceedings of the 15th international specialty conference on cold regions engineering (pp. 504–514). American Society of Civil Engineers.
  • Brooks, H., Dore, G., Locat, A., & Allard, M. (2019). Quantifying hazard and climate change fragility for the airport access road in Salluit, Nunavik, Quebec. In J.-P. Bilodeau, D. F. Nadeau, D. Fortier, & D. Conciatori (Eds.), Proceedings of the 18th international conference on cold regions engineering and the 8th Canadian permafrost conference (pp. 516–524). American Society of Civil Engineers.
  • Budd, L., & Ryley, T. (2012). Chapter 3 an international dimension: Aviation. In T. Ryley & L. Chapman (Eds.), Transport and sustainability: Vol. 2. Transport and climate change (pp. 39–64). Emerald Group Publishing Limited.
  • Burbidge, R. (2016). Adapting European airports to a changing climate. Transportation Research Procedia, 14, 14–23. https://doi.org/10.1016/j.trpro.2016.05.036
  • Burbidge, R. (2018). Adapting aviation to a changing climate: Key priorities for action. Journal of Air Transport Management, 71, 167–174. https://doi.org/10.1016/j.jairtraman.2018.04.004
  • Burbidge, R., Melrose, A., & Watt, A. (2011). Potential adaptation to impacts of climate change on air traffic management. In Proceedings of the, 9th USA/Europe Air Traffic Management Research and Development Seminar, ATM 2011 (pp. 91–99). The European Organisation for the Safety of Air Navigation (EUROCONTROL).
  • Byravan, S., Rajan, S. C., & Rangarajan, R. (2012). Sea level rise: Impact on major infrastructure, ecosystems and land along the Tamil Nadu coast. In N. K. Dubash (Ed.), Handbook of climate change and India: Development, politics and governance (pp. 41–55). Taylor and Francis.
  • Chang, C.-T. (2017). Risk factors associated with flying in adverse weather: From the passengers’ point of view. Journal of Air Transport Management, 58, 68–75. https://doi.org/10.1016/j.jairtraman.2016.09.011
  • Coffel, E. D., & Horton, R. M. (2015). Climate change and the impact of extreme temperatures on aviation. Weather, Climate, and Society, 7(1), 94–102. https://doi.org/10.1175/WCAS-D-14-00026.1
  • Coffel, E. D., Thompson, T. R., & Horton, R. M. (2017). The impacts of rising temperatures on aircraft takeoff performance. Climatic Change, 144(2), 381–388. https://doi.org/10.1007/s10584-017-2018-9
  • Collins, A. M., Coughlin, D., & Randall, N. (2019). Engaging environmental policy-makers with systematic reviews: Challenges, solutions and lessons learned. Environmental Evidence, 8(1), 2. https://doi.org/10.1186/s13750-018-0144-0
  • Department for Business, Energy & Industrial Strategy. (2022). Mandatory climate-related financial disclosures by publicly quoted companies, large private companies and LLPs: Non-binding guidance. https://www.gov.uk/government/publications/climate-related-financial-disclosures-for-companies-and-limited-liability-partnerships-llps
  • De Vivo, C., Ellena, M., Capozzi, V., Budillon, G., & Mercogliano, P. (2022). Risk assessment framework for Mediterranean airports: A focus on extreme temperatures and precipitations and sea level rise. Natural Hazards, 111(1), 547–566. https://doi.org/10.1007/s11069-021-05066-0
  • Dimayuga, P. I., Galloway, T., Widener, M. J., & Saxe, S. (2022). Air transportation as a central component of remote community resilience in northern Ontario, Canada. Sustainable and Resilient Infrastructure, 7(5), 624–637. https://doi.org/10.1080/23789689.2021.1984634
  • Dimitriou, D. J. (2016). Climate change implications in aviation and tourism market equilibrium. In W. Leal Filho, H. Musa, G. Cavan, P. O’Hare, & J. Seixas (Eds.), Climate change management. Climate change adaptation, resilience and hazards (pp. 409–424). Springer.
  • Dolman, N., & Vorage, P. (2020). Preparing Singapore changi airport for the effects of climate change. Journal of Airport Management, 14(1), 54–66.
  • EUROCONTROL. (2013). Challenges of growth 2013: Climate change risk and resilience. EUROCONTROL.
  • EUROCONTROL. (2018). Challenges of growth 2018: Adapting aviation to a changing climate. EUROCONTROL.
  • EUROCONTROL. (2021a). Climate change risks for European aviation 2021. EUROCONTROL.
  • EUROCONTROL. (2021b). Collaborative best practices for handling of adverse weather at European airports. EUROCONTROL.
  • Ferrulli, P. (2016). Resilient architectural design: Considerations in the design of airports to withstand climate change effects. In W. Leal Filho, H. Musa, G. Cavan, P. O’Hare, & J. Seixas (Eds.), Climate change adaptation, resilience and hazards. Climate change management (pp. 381–393). Springer.
  • Fisk, G., Tonmoy, F., & Rissik, D. (2019). Climate change and coastal transport infrastructure – How do we keep Australia moving? In J. Mathew, C. Lim, L. Ma, D. Sands, M. Cholette, & P. Borghesani (Eds.), Lecture notes in mechanical engineering. Asset intelligence through integration and interoperability and contemporary vibration engineering technologies (pp. 167–176). Springer.
  • Fortier, R., LeBlanc, A.-M., & Yu, W. (2011). Impacts of permafrost degradation on a road embankment at Umiujaq in Nunavik (Quebec), Canada. Canadian Geotechnical Journal, 48(5), 720–740. https://doi.org/10.1139/t10-101
  • Gössling, S., & Lyle, C. (2021). Transition policies for climatically sustainable aviation. Transport Reviews, 41(5), 643–658. https://doi.org/10.1080/01441647.2021.1938284
  • Gratton, G., Padhra, A., Rapsomanikis, S., & Williams, P. D. (2020). The impacts of climate change on Greek airports. Climatic Change, 160(2), 219–231. https://doi.org/10.1007/s10584-019-02634-z
  • Gratton, G. B., Williams, P. D., Padhra, A., & Rapsomanikis, S. (2021). Reviewing the impacts of climate change on air transport operations. The Aeronautical Journal, 126(1295), 209–221. https://doi.org/10.1017/aer.2021.109
  • Griggs, G. (2020). Coastal airports and rising sea levels. Journal of Coastal Research, 36(5), 1079–1092. https://doi.org/10.2112/JCOASTRES-D-20A-00004.1
  • Gultepe, I., Sharman, R., Williams, P. D., Zhou, B., Ellrod, G., Minnis, P., Trier, S., Griffin, S., Yum, S. S., Gharabaghi, B., Feltz, W., Temimi, M., Pu, Z., Storer, L. N., Kneringer, P., Weston, M. J., Chuang, H.-Y., Thobois, L., Dimri, A. P., … Neto, F. L. A. (2019). A review of high impact weather for aviation meteorology. Pure and Applied Geophysics, 176(5), 1869–1921. https://doi.org/10.1007/s00024-019-02168-6
  • Haddaway, N. R., Macura, B., Whaley, P., & Pullin, A. S. (2018). ROSES reporting standards for systematic evidence syntheses: Pro forma, flow-diagram and descriptive summary of the plan and conduct of environmental systematic reviews and systematic maps. Environmental Evidence, 7(1), 7. https://doi.org/10.1186/s13750-018-0121-7
  • Hamzah, F. M., Irfan, M. Z., Tajudin, H., Toriman, E., & Abdullah, S. M. S. (2019). Assessment of rainfall trend at the airports using non-parametric statistics approach. International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 290–295. https://doi.org/10.30534/ijatcse/2019/4381.62019
  • Hane, F. T. (2016). Comment on climate change and the impact of extreme temperatures on aviation. Weather, Climate and Society, 8(2), 205–206. https://doi.org/10.1175/WCAS-D-15-0030.1
  • Hansen, B. B., Isaksen, K., Benestad, R. E., Kohler, J., Pedersen, Å. Ø., Loe, L. E., Coulson, S. J., Larsen, J. O., & Varpe, Ø. (2014). Warmer and wetter winters: Characteristics and implications of an extreme high weather event in the high Arctic. Environmental Research Letters, 9(11), 114021. https://doi.org/10.1088/1748-9326/9/11/114021
  • He, Y., Lindbergh, S., Rakas, J., & Graves, C. M. C., Jr. (2019). Characterizing lightning-strike hazard to airport facilities: A case study of Baltimore Washington International Airport. In Enabling future flight through evolving ICNS technologies, integrated communications, navigation and surveillance conference (ICNS) 2019 (pp. 1–9). Institute of Electrical and Electronic Engineers.
  • Hernandez, M. F. B., Lemieux, C., & Dore, G. (2019). Long-term monitoring of mitigation techniques of permafrost thaw effects at Tasiujaq Airport in Nunavik, Canada. In J. P. Bilodeau, D. F. Nadeau, D. Fortier, & D. Conciatori (Eds.), Proceedings of the 18th international conference on cold regions engineering and the 8th canadian permafrost conference (pp. 500–507). American Society of Civil Engineers. https://doi.org/10.1016/j.trd.2021.102801.
  • IATA. (2012). IATA economic briefing, November 2012: The impact of hurricane sandy. International Air transport Association.
  • ICAO. (2020). Climate change adaptation synthesis report. International Civil Aviation Organisation.
  • ICAO. (2022). Resolution A41-21: Consolidated statement of continuing ICAO policies and practices related to environmental protection – climate change. International Civil Aviation Organisation.
  • ICAO. (n.d.). ICAO’s regional presence. https://www.icao.int/secretariat/RegionalOffice/Pages/default.aspx
  • IPCC. (2021). Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change.
  • IPCC. (2022). Climate change 2022: Impacts, adaptation, and vulnerability. Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change.
  • Irvine, E. A., Shine, K. P., & Stringer, M. A. (2016). What are the implications of climate change for trans-Atlantic aircraft routing and flight time? Transportation Research Part D: Transport and Environment, 47, 44–53. https://doi.org/10.1016/j.trd.2016.04.014
  • Jacob, K., Deodatis, G., Atlas, J., Whitcomb, M., Lopeman, M., Markogiannaki, O., Kennett, Z., Morla, A., Leichenko, R., & Vancura, P. (2011). Chapter 9: Transportation. In C. Rosenzweig, W. Soleki, A. DeGaetano, M. O’Grady, S. Hassol, & P. Grabhorn (Eds.), Responding to climate change in New York State: The climAID integrated assessment for effective climate change adaptation in New York State. Final report (pp. 299–362). Annals of the New York Academy of Sciences.
  • Jardines, A., Soler, M., & García-Heras, J. (2019). Data-driven occupancy prediction in adverse weather conditions using thunderstorm and traffic observations. In 9th SESAR innovation days: Inspiring long-term research in the field of air traffic management, SIDs 2019. SESAR Joint Undertaking.
  • Jia, X., Cao, B., & Zhu, Y. (2022). A climate chamber study on subjective and physiological responses of airport passengers from walking to a sedentary status in summer. Building and Environment, 207, 108547. https://doi.org/10.1016/j.buildenv.2021.108547
  • Kabosova, L., Kmet, S., & Katunsky, D. (2019). Digitally designed airport terminal using wind performance analysis. Buildings, 9(3), 59. https://doi.org/10.3390/buildings9030059
  • Kaewunruen, S., Sresakoolchai, J., & Xiang, Y. (2021). Identification of weather influences on flight punctuality using machine learning approach. Climate, 9(8), 127. https://doi.org/10.3390/cli9080127
  • Karnauskas, K. B., Donnelly, J. P., Barkley, H. C., & Martin, J. E. (2015). Coupling between air travel and climate. Nature Climate Change, 5(12), 1068–1073. https://doi.org/10.1038/nclimate2715
  • Kim, K., Pant, P., & Yamashita, E. (2018). Integrating travel demand modeling and flood hazard risk analysis for evacuation and sheltering. International Journal of Disaster Risk Reduction, 31, 1177–1186. https://doi.org/10.1016/j.ijdrr.2017.10.025
  • Larsen, O. L. (2015). Climate change is here to stay. What about the airport infrastructure? Journal of Airport Management, 9(3), 264–269.
  • Lee, J., Marla, L., & Vaishnav, P. (2021). The impact of climate change on the recoverability of airline networks. Transportation Research Part D: Transport and Environment, 95, 102801. https://doi.org/10.1016/j.trd.2021.102801
  • Lee, S. H., Williams, P. D., & Frame, T. H. A. (2019). Increased shear in the North Atlantic upper-level jet stream over the past four decades. Nature, 572(7771), 639–643. https://doi.org/10.1038/s41586-019-1465-z
  • Leung, A. C. W., Gough, W. A., & Butler, K. A. (2020). Changes in fog, ice fog, and low visibility in the Hudson Bay region: Impacts on aviation. Atmosphere, 11(2), 186. https://doi.org/10.3390/atmos11020186
  • Leung, A. C. W., Gough, W. A., Butler, K. A., Mohsin, T., & Hewer, M. J. (2022). Characterizing observed surface wind speed in the Hudson Bay and labrador regions of Canada from an aviation perspective. International Journal of Biometeorology, 66(2), 411–425. https://doi.org/10.1007/s00484-020-02021-9
  • Lindbergh, S., Ju, Y., He, Y., Radke, J., & Rakas, J. (2022a). Cross-sectoral and multiscalar exposure assessment to advance climate adaptation policy: The case of future coastal flooding of California’s airports. Climate Risk Management, 38, 100462. https://doi.org/10.1016/j.crm.2022.100462
  • Lindbergh, S., Reed, J., Takara, M., & Rakas, J. (2022b). Decoding climate adaptation governance: A sociotechnical perspective of U.S. Airports. Journal of Cleaner Production, 334, 130118. https://doi.org/10.1016/j.jclepro.2021.130118
  • Lopez, A. (2016). Vulnerability of airports on climate change: An assessment methodology. Transportation Research Procedia, 14, 24–31. https://doi.org/10.1016/j.trpro.2016.05.037
  • Martins, J., Rocha, A., Viceto, C., Pereira, S. C., & Santos, J. A. (2020). Future projections for wind, wind shear and helicity in the Iberian Peninsula. Atmosphere, 11(9), 1001. https://doi.org/10.3390/atmos11091001
  • Melvin, A. M., Larsen, P., Boehlert, B., Neumann, J. E., Chinowsky, P., Espinet, X., Martinich, J., Baumann, M. S., Rennels, L., Bothner, A., Nicolsky, D. J., & Marchenko, S. S. (2017). Climate change damages to Alaska public infrastructure and the economics of proactive adaptation. Proceedings of the National Academy of Sciences of the United States of America, 114(2), E122–E131. https://doi.org/10.1073/pnas.1611056113
  • Meng, Q., & Chen, Z. (2007). Simulation and research on indoor environment control mode basing on thermal comfort: A case study in the aviation building in Sanya airport. In Proceedings International Building Performance Simulation Association 2007 (pp. 161–168). International Building Performance Simulation Association.
  • Monioudi, I. Ν., Asariotis, R., Becker, A., Bhat, C., Dowding-Gooden, D., Esteban, M., Feyen, L., Mentaschi, L., Nikolaou, A., Nurse, L., Phillips, W., Smith, DΑΥ, Satoh, M., Trotz, U. O. D., Velegrakis, A. F., Voukouvalas, E., Vousdoukas, M. I., & Witkop, R. (2018). Climate change impacts on critical international transportation assets of Caribbean Small Island Developing States (SIDS): The case of Jamaica and Saint Lucia. Regional Environmental Change, 18(8), 2211–2225. https://doi.org/10.1007/s10113-018-1360-4
  • Moomen, A. W. (2012). Air transport in Ghana: Some climatic constraints. Aviation, 16(3), 88–95. https://doi.org/10.3846/16487788.2012.732323
  • Myers, M. R., Barnard, P. L., Beighley, E., Cayan, D. R., Dugan, J. E., Feng, D., Hubbard, D. M., Iacobellis, S. F., Melack, J. M., & Page, H. M. (2019). A multidisciplinary coastal vulnerability assessment for local government focused on ecosystems, Santa Barbara area, California. Ocean & Coastal Management, 182, 104921. https://doi.org/10.1016/j.ocecoaman.2019.104921
  • Najafi, M. R., Zhang, Y., & Martyn, N. (2021). A flood risk assessment framework for interdependent infrastructure systems in coastal environments. Sustainable Cities and Society, 64, 102516. https://doi.org/10.1016/j.scs.2020.102516
  • Németh, H., Švec, M., & Kandráč, P. (2018). The influence of global climate change on the European aviation. International Journal on Engineering Applications, 6(6), 179–186. https://doi.org/10.15866/irea.v6i6.16679
  • Pačaiová, H., Korba, P., Hovanec, M., Galanda, J., Šváb, P., & Lukáč, J. (2021). Use of simulation tools for optimization of the time duration of winter maintenance activities at airports. Sustainability, 13(3), 1095. https://doi.org/10.3390/su13031095
  • Pagán-Trinidad, I., Lopez, R. R., & Diaz, E. L. (2019). Education and building capacity for improving resilience of coastal infrastructure. In Charged up for the next 125 years – Proceedings of the 126th ASEE annual conference and exposition (pp. 9633–9663). American Society for Engineering Education.
  • Pan, Z., & Liu, H. (2020). Impact of human projects on storm surge in the Yangtze estuary. Ocean Engineering, 196, 106792. https://doi.org/10.1016/j.oceaneng.2019.106792
  • Pejovic, T., Noland, R. B., Williams, V., & Toumi, R. (2009a). A tentative analysis of the impacts of an airport closure. Journal of Air Transport Management, 15(5), 241–248. https://doi.org/10.1016/j.jairtraman.2009.02.004
  • Pejovic, T., Williams, V. A., Noland, R. B., & Toumi, R. (2009b). Factors affecting the frequency and severity of airport weather delays and the implications of climate change for future delays. Transportation Research Record, 2139(1), 97–106. https://doi.org/10.3141/2139-12
  • Pümpel, H. (2016). Maintaining aviation safety: Regulatory responses to intensifying weather events. Carbon & Climate Law Review, 10(2), 113–117. http://www.jstor.org/stable/44135214
  • Pümpel, H., & Williams, P. D. (2016). The impacts of climate change on aviation: Scientific challenges and adaptation pathways. In ICAO environment report 2016: Onboard a sustainable future (pp. 205–207). ICAO.
  • Qian, J., Miao, S., Tapper, N., Xie, J., & Ingleton, G. (2020). Investigation on airport landscape cooling associated with irrigation: A case study of Adelaide airport, Australia. Sustainability, 12(19), 8123. https://doi.org/10.3390/su12198123
  • Raymond, C., Matthews, T., & Horton, R. M. (2020). The emergence of heat and humidity too severe for human tolerance. Science Advances, 6(19), eaaw1838. https://doi.org/10.1126/sciadv.aaw1838
  • Ryley, T., Baumeister, S., & Coulter, L. (2020). Climate change influences on aviation: A literature review. Transport Policy, 93, 55–64. https://doi.org/10.1016/j.tranpol.2020.04.010
  • Schultz, M., Lorenz, S., Schmitz, R., & Delgado, L. (2018). Weather impact on airport performance. Aerospace, 5(4), 109. https://doi.org/10.3390/aerospace5040109
  • Sheehan, R. (2019). Climate change and winter weather impacts. Journal of Airport Management, 13(4), 345–353.
  • Shi, X., Beutel, M., Long, T., Hellenthal, A., & Bristoll-Groll, C. (2015). Green stormwater infrastructure strategies for airports: Challenges and opportunities. In J. Liu, S. Zhao, & P. Li (Eds.), Environmental sustainability in environmental infrastructure: International symposium on systematic approaches to environmental sustainability in transportation (pp. 1–13). American Society of Civil Engineers.
  • Shimokawa, S., Murakami, T., Iizuka, S., Yoshino, J., & Yasuda, T. (2014). A new typhoon bogussing scheme to obtain the possible maximum typhoon and its application for assessment of impacts of the possible maximum storm surges in Ise and Tokyo Bays in Japan. Natural Hazards, 74(3), 2037–2052. https://doi.org/10.1007/s11069-014-1277-2
  • Storer, L. N., Gill, P. G., & Williams, P. D. (2019). Multi-model ensemble predictions of aviation turbulence. Meteorological Applications, 26(3), 416–428. https://doi.org/10.1002/met.1772
  • Storer, L. N., Gill, P. G., & Williams, P. D. (2020). Multi-diagnostic multi-model ensemble forecasts of aviation turbulence. Meteorological Applications, 27(1), e1885. https://doi.org/10.1002/met.1885
  • Storer, L. N., Williams, P. D., & Joshi, M. M. (2017). Global response of clear-air turbulence to climate change. Geophysical Research Letters, 44(19), 9976–9984. https://doi.org/10.1002/2017GL074618
  • Suhrbier, J. H. (2008). Potential impacts of climate change and variability for transportation long-range planning and investment. In S. Pulugurtha, R. O’Loughlin, & S. Hallmark (Eds.), Transportation land use, planning, and air quality congress 2007 (pp. 427–440). American Society of Civil Engineers.
  • Sumaja, K., Satriyabawa, I. K. M., Dewi, T. P. P., & Fadianika, A. (2021). Potential of rainwater harvesting (RWH) to overcome the problem of water scarcity at the airports: A case study in I Gusti Ngurah Rai Airport, Bali. IOP Conference Series: Earth and Environmental Science, 893(1), 012079. https://doi.org/10.1088/1755-1315/893/1/012079
  • Sung, S., Kwon, Y.-S., Lee, D. K., & Cho, Y. (2018). Predicting the potential distribution of an invasive species, Solenopsis invicta Buren (Hymenoptera: Formicidae), under climate change using species distribution models. Entomological Research, 48(6), 505–513. https://doi.org/10.1111/1748-5967.12325
  • Task Force on Climate-Related Financial Disclosures. (2023). Task force on climate-related financial disclosures. Retrieved March 27, 2023 from https://www.fsb-tcfd.org/
  • Terorotua, H., Duvat, V. K. E., Maspataud, A., & Ouriqua, J. (2020). Assessing perception of climate change by representatives of public authorities and designing coastal climate services: Lessons learnt from French Polynesia. Frontiers in Marine Science, 7, 160. https://doi.org/10.3389/fmars.2020.00160
  • Thacker, S., Kelly, S., Pant, R., & Hall, J. W. (2018). Evaluating the benefits of adaptation of critical infrastructures to hydrometeorological risks. Risk Analysis, 38(1), 134–150. https://doi.org/10.1111/risa.12839
  • Thompson, T. R. (2016). Climate change impacts upon the commercial air transport industry: An overview. Carbon & Climate Law Review, 10(2), 105–112. https://www.jstor.org/stable/44135213
  • Tsalis, T. A., Botsaropoulou, V. D., & Nikolaou, I. E. (2018). A methodology to evaluate the disclosure practices of organisations related to climate change risks: A case study of international airports. International Journal of Global Warming, 15(3), 257–276. https://doi.org/10.1504/IJGW.2018.093120
  • Tye, M. R., & Giovannettone, J. P. (2021). Impacts of future weather and climate extremes on United States infrastructure assessing and prioritizing adaptation actions. American Society of Civil Engineers.
  • Umeyama, M. (2012). Shore protection against sea level rise and tropical cyclones in small island states. Natural Hazards Review, 13(2), 106–116. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000052
  • Uzarowski, L., Musial, M., & Rizvi, R. (2018, September 28–October 3). Challenge of permafrost degradation impact on airport and road pavements [Paper presentation]. 2018 conference of the Transportation Association of Canada Saskatoon, SK, Canada.
  • Vogiatzis, K., Kassomenos, P., Gerolymatou, G., Valamvanos, P., & Anamaterou, E. (2021). Climate change adaptation studies as a tool to ensure airport’s sustainability: The case of Athens International Airport (A. I.A.). Science of The Total Environment, 754, 142153. https://doi.org/10.1016/j.scitotenv.2020.142153
  • Williams, P. D. (2016). Transatlantic flight times and climate change. Environmental Research Letters, 11(2), 024008. https://doi.org/10.1088/1748-9326/11/2/024008
  • Williams, P. D. (2017). Increased light, moderate, and severe clear-air turbulence in response to climate change. Advances in Atmospheric Sciences, 34(5), 576–586. https://doi.org/10.1007/s00376-017-6268-2
  • Williams, P. D., & Joshi, M. M. (2013). Intensification of winter transatlantic aviation turbulence in response to climate change. Nature Climate Change, 3(7), 644–648. https://doi.org/10.1038/nclimate1866
  • Yair, Y. (2018). Lightning hazards to human societies in a changing climate. Environmental Research Letters, 13(12), 123002. https://doi.org/10.1088/1748-9326/aaea86
  • Yesudian, A. N., & Dawson, R. J. (2021). Global analysis of sea level rise risk to airports. Climate Risk Management, 31, 100266. https://doi.org/10.1016/j.crm.2020.100266
  • Yuan, W., Dai, P., Xu, M., Song, W., & Zhang, P. (2021). Estimating the impact of global warming on aircraft takeoff performance in China. Atmosphere, 12(11), 1472. https://doi.org/10.3390/atmos12111472
  • Zhang, Y., & Najafi, M. R. (2020). Probabilistic numerical modeling of compound flooding caused by tropical storm Matthew over a data-scarce coastal environment. Water Resources Research, I, e2020WR028565. https://doi.org/10.1029/2020WR028565
  • Zhou, L., & Chen, Z. (2020). Measuring the performance of airport resilience to severe weather events. Transportation Research Part D: Transport and Environment, 83, 102362. https://doi.org/10.1016/j.trd.2020.102362
  • Zhou, Y., Zhang, N., Li, C., Liu, Y., & Huang, P. (2018). Decreased takeoff performance of aircraft due to climate change. Climatic Change, 151(3–4), 463–472. https://doi.org/10.1007/s10584-018-2335-7