1,360
Views
0
CrossRef citations to date
0
Altmetric
Articles

Bus bunching: a comprehensive review from demand, supply, and decision-making perspectives

ORCID Icon, , &
Pages 766-790 | Received 29 May 2023, Accepted 25 Jan 2024, Published online: 07 Feb 2024

References

  • Argote-Cabanero, J., Daganzo, C. F., & Lynn, J. W. (2015). Dynamic control of complex transit systems. Transportation Research Part B: Methodological, 81, 146–160. https://doi.org/10.1016/j.trb.2015.09.003
  • Arriagada, J., Gschwender, A., Munizaga, M. A., & Trépanier, M. (2019). Modeling bus bunching using massive location and fare collection data. Journal of Intelligent Transportation Systems, 23(4), 332–344. https://doi.org/10.1080/15472450.2018.1494596
  • Balcombe, R., Mackett, R. L., Paulley, N., Preston, J., Shires, J., Titheridge, H., Wardman, M., & White, P. (2004). The demand for public transport: A practical guide. TRL Limited.
  • Barabino, B., Di Francesco, M., & Mozzoni, S. (2013). Regularity diagnosis by automatic vehicle location raw data. Public Transport, 4(3), 187–208. https://doi.org/10.1007/s12469-012-0059-z
  • Bartholdi, J. J., & Eisenstein, D. D. (2012). A self-coördinating bus route to resist bus bunching. Transportation Research Part B: Methodological, 46(4), 481–491. https://doi.org/10.1016/j.trb.2011.11.001
  • Berrebi, S. J., Crudden, S. Ó., & Watkins, K. E. (2018a). Translating research to practice: Implementing real-time control on high-frequency transit routes. Transportation Research Part A: Policy and Practice, 111, 213–226. http://doi.org/10.1016/j.tra.2018.03.008
  • Berrebi, S. J., Hans, E., Chiabaut, N., Laval, J. A., Leclercq, L., & Watkins, K. E. (2018b). Comparing bus holding methods with and without real-time predictions. Transportation Research Part C: Emerging Technologies, 87, 197–211. https://doi.org/10.1016/j.trc.2017.07.012
  • Bie, Y., Xiong, X., Yan, Y., & Qu, X. (2020). Dynamic headway control for high-frequency bus line based on speed guidance and intersection signal adjustment. Computer-Aided Civil and Infrastructure Engineering, 35(1), 4–25. https://doi.org/10.1111/mice.12446
  • Cao, Z., & Ceder, A. (2019). Autonomous shuttle bus service timetabling and vehicle scheduling using skip-stop tactic. Transportation Research Part C: Emerging Technologies, 102, 370–395. https://doi.org/10.1016/j.trc.2019.03.018
  • Cats, O., Burghout, W., Toledo, T., & Koutsopoulos, H. N. (2010). Evaluation of real-time holding strategies for improved bus service reliability. Conference on Intelligent Transportation Systems, Proceedings, ITSC IEEE.
  • Cats, O., Larijani, A. N., Olafsdottir, A., Burghout, W., Andreasson, L., & Koutsopoulos, H. N. (2012). Bus-holding control strategies. Transportation Research Record.
  • Cats, O., Rufi, F. M., & Koutsopoulos, H. N. (2014). Optimizing the number and location of time point stops. Public Transport, 6(3), 215–235. https://doi.org/10.1007/s12469-014-0092-1
  • Ceder, A. (2016). Public transit planning and operation modeling, practice and behavior (2nd ed.). CRC Press.
  • Ceder, A., Hadas, Y., Mclvor, M., & Ang, A. (2013). Transfer synchronization of public transport networks. Transportation Research Record: Journal of the Transportation Research Board, 2350(1), 9–16. https://doi.org/10.3141/2350-02
  • Chandrasekar, P., Cheu, R. L., & Chin, H. C. (2002). Simulation evaluation of route-based control of bus operations. Journal of Transportation Engineering, 128(6), 519–527. https://doi.org/10.1061/(ASCE)0733-947X(2002)128:6(519)
  • Chioni, E., Iliopoulou, C., Milioti, C., & Kepaptsoglou, K. (2020). Factors affecting bus bunching at the stop level: A geographically weighted regression approach. International Journal of Transportation Science and Technology, 9(3), 207–217. https://doi.org/10.1016/j.ijtst.2020.04.001
  • Chow, A. H. F., & Li, S. (2019). Modelling and managing bus service regularity with influence of prevailing traffic. Transportmetrica B, 7(1), 82–106.
  • Cortés, C. E., Jara-Díaz, S., & Tirachini, A. (2011). Integrating short turning and deadheading in the optimization of transit services. Transportation Research Part A, 45(5), 419–434.
  • Cortes, C. E., Saez, D., Milla, F., Nunez, A., & Riquelme, M. (2010). Hybrid predictive control for real-time optimization of public transport systems’ operations based on evolutionary multi-objective optimization. Transportation Research Part C: Emerging Technologies, 18(5), 757–769. https://doi.org/10.1016/j.trc.2009.05.016
  • Currie, G., Douglas, N., & Kearns, I. (2012). An assessment of alternative bus reliability indicators. Australasian Transport Research Forum Proceedings, Pert, Australia.
  • Currie, G., & Shalaby, A. (2008). Active transit signal priority for streetcars: Experience in Melbourne, Australia, and Toronto, Canada. Transportation Research Record, 2042(1), 41–49.
  • Daganzo, C. F. (2009). A headway-based approach to eliminate bus bunching: Systematic analysis and comparisons. Transportation Research Part B: Methodological, 43(10), 913–921. https://doi.org/10.1016/j.trb.2009.04.002
  • Daganzo, C. F., & Pilachowski, J. (2011). Reducing bunching with bus-to-bus cooperation. Transportation Research Part B: Methodological, 45(1), 267–277. https://doi.org/10.1016/j.trb.2010.06.005
  • Dai, Z., Liu, X. C., Chen, Z., Guo, R., & Ma, X. (2019). A predictive headway-based bus-holding strategy with dynamic control point selection: A cooperative game theory approach. Transportation Research Part B: Methodological, 125, 29–51. https://doi.org/10.1016/j.trb.2019.05.001
  • Delgado, F., Munoz, J. C., & Giesen, R. (2012). How much can holding and/or limiting boarding improve transit performance? Transportation Research Part B: Methodological, 46(9), 1202–1217. https://doi.org/10.1016/j.trb.2012.04.005
  • Delgado, F., Muñoz, J. C., Giesen, R., & Wilson, N. H. M. (2015). Integrated real-time transit signal priority control for high-frequency segregated transit services. Transportation Research Record: Journal of the Transportation Research Board, 2533(1), 28–38. https://doi.org/10.3141/2533-04
  • Deng, Y. J., Liu, X. H., Hu, X., & Zhang, M. (2020). Reduce bus bunching with a real-time speed control algorithm considering heterogeneous roadway conditions and intersection delays. Journal of Transportation Engineering Part A: Systems, 146(7), 04020048.
  • Diab, E. I., Badami, M. G., & El-Geneidy, A. M. (2015). Bus transit service reliability and improvement strategies: Integrating the perspectives of passengers and transit agencies in North America. Transport Reviews, 35(3), 292–328. https://doi.org/10.1080/01441647.2015.1005034
  • Diab, E. I., & El-Geneidy, A. M. (2012). Understanding the impacts of a combination of service improvement strategies on bus running time and passenger’s perception. Transportation Research Part A, 46(3), 614–625.
  • Drabicki, A., Cats, O., Kucharski, R., Fonzone, A., & Szarata, A. (2023). Should I stay or should I board? Willingness to wait with real-time crowding information in urban public transport. Research in Transportation Business & Management, 47, 100963.
  • Drabicki, A., Kucharski, R., & Cats, O. (2022). Mitigating bus bunching with real-time crowding information. Transportation, 50(3), 1003–1030.
  • Dueker, K. J., Kimpel, T. J., Strathman, J. G., & Callas, S. (2004). Determinants of bus dwell time. Journal of Public Transportation, 7(1), 21–40. https://doi.org/10.5038/2375-0901.7.1.2
  • Eberlein, X. J., Wilson, N. H. M., & Bernstein, D. (2001). The holding problem with real-time information available. Transportation Science, 35(1), 1–18. https://doi.org/10.1287/trsc.35.1.1.10143
  • El-Geneidy, A. M., Horning, J., & Krizek, K. J. (2011). Analyzing transit service reliability using detailed data from automatic vehicular locator systems. Journal of Advanced Transportation, 45(1), 66–79. https://doi.org/10.1002/atr.134
  • El-Geneidy, A. M., & Vijayakumar, N. (2011). The effects of articulated buses on dwell and running times. Journal of Public Transportation, 14(3), 63–86. https://doi.org/10.5038/2375-0901.14.3.4
  • Enayatollahi, F., Idris, A. O., & Atashgah, M. A. (2019). Modelling bus bunching under variable transit demand using cellular automata. Public Transport, 11(2), 269–298. https://doi.org/10.1007/s12469-019-00203-2
  • Esfeh, M. A., Wirasinghe, S. C., Saidi, S., & Kattan, L. (2021). Waiting time and headway modelling for urban transit systems – a critical review and proposed approach. Transport Reviews, 41(2), 141–163. https://doi.org/10.1080/01441647.2020.1806942
  • Estrada, M., Mension, J., & Salicrú, M. (2021). Operation of transit corridors served by two routes: Physical design, synchronization, and control strategies. Transportation Research Part C: Emerging Technologies, 130, 103283. https://doi.org/10.1016/j.trc.2021.103283
  • Fabian, J. J., & Sanchez-Martinez, G. E. (2017). Simulation-based comparison of holding strategies for a multibranch light rail service. Transportation Research Record: Journal of the Transportation Research Board, 2648(1), 23–32. https://doi.org/10.3141/2648-03
  • Fan, W. D., & Machemehl, R. B. (2009). Do tranist users just wait for buses or wait with strategies?: Some numerical results that transit planners should See. Transportation Research Record, 2111(1), 169–176.
  • Feng, W., & Figliozzi, M. (2011). Empirical findings of bus bunching distributions and attributes using archived AVL/APC bus data. Towards Sustainable Transportation Systems - Proceedings of the 11th International Conference of Chinese Transportation Professionals.
  • Fonzone, A., Schmöcker, J. D., & Liu, R. (2015). A model of bus bunching under reliability-based passenger arrival patterns. Transportation Research Part C: Emerging Technologies, 59, 164–182. https://doi.org/10.1016/j.trc.2015.05.020
  • Fu, L., & Yang, X. (2002). Design and implementation of bus-holding control strategies with real-time information. Transportation Research Record, 1791(1), 6–12.
  • Gkiotsalitis, K. (2021). Stop-skipping in rolling horizons. Transportmetrica A: Transport Science, 17(4), 492–520. https://doi.org/10.1080/23249935.2020.1798554
  • Gkiotsalitis, K., Wu, Z., & Cats, O. (2019). A cost-minimization model for bus fleet allocation featuring the tactical generation of short-turning and interlining options. Transportation Research Part C: Emerging Technologies, 98, 14–36. https://doi.org/10.1016/j.trc.2018.11.007
  • Gong, Z., Du, B., Liu, Z., Zeng, W., Perez, P., & Wu, K. (2020). SD-seq2seq: A deep learning model for Bus bunching prediction based on smart card data. IEEE.
  • Hassan, M. N., Rashidi, T. H., & Nassir, N. (2021). Consideration of different travel strategies and choice set sizes in transit path choice modelling. Transportation, 48(2), 723–746. https://doi.org/10.1007/s11116-019-10075-x
  • He, S. X. (2015). An anti-bunching strategy to improve bus schedule and headway reliability by making use of the available accurate information. Computers & Industrial Engineering, 85, 17–32. https://doi.org/10.1016/j.cie.2015.03.004
  • He, S. X., Dong, J., Liang, S. D., & Yuan, P. C. (2019). An approach to improve the operational stability of a bus line by adjusting bus speeds on the dedicated bus lanes. Transportation Research Part C: Emerging Technologies, 107, 54–69. https://doi.org/10.1016/j.trc.2019.08.001
  • He, S. X., He, J. J., Liang, S. D., Dong, J. Q., & Yuan, P. C. (2022). A dynamic holding approach to stabilizing a Bus line based on the Q-learning algorithm with multistage look-ahead. Transportation Science, 56(1), 31–51. https://doi.org/10.1287/trsc.2021.1048
  • Hernández, D., Muñoz, J. C., Giesen, R., & Delgado, F. (2015). Analysis of real-time control strategies in a corridor with multiple bus services. Transportation Research Part B, 78, 83–105.
  • Hickman, M. D. (2001). An analytic stochastic model for the transit vehicle holding problem. Transportation Science, 35(3), 215–237. https://doi.org/10.1287/trsc.35.3.215.10150
  • Iliopoulou, C. A., Milioti, C. P., Vlahogianni, E. I., & Kepaptsoglou, K. L. (2020a). Identifying spatio-temporal patterns of bus bunching in urban networks. Journal of Intelligent Transportation Systems, 24(4), 365–382. https://doi.org/10.1080/15472450.2020.1722949
  • Iliopoulou, C., Vlahogianni, E. I., & Kepaptsoglou, K. (2020b). Understanding the factors that affect the bus bunching events’ duration. International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece.
  • Ingvardson, J. B., Nielsen, O. A., Raveau, S., & Nielsen, B. F. (2018). Passenger arrival and waiting time distributions dependent on train service frequency and station characteristics: A smart card data analysis. Transportation Research Part C: Emerging Technologies, 90, 292–306. https://doi.org/10.1016/j.trc.2018.03.006
  • Jiang, R. S., Hu, D. W., & Wu, X. (2019). Prediction of bus bunching using smart card data. ASCE.
  • Khan, Z. S., He, W., & Menéndez, M. (2023). Application of modular vehicle technology to mitigate bus bunching. Transportation Research Part C, 146, 103953.
  • Kim, J.-K., Lee, B., & Oh, S. (2009). Passenger choice models for analysis of impacts of real-time Bus information on crowdedness. Transportation Research Record: Journal of the Transportation Research Board, 2112(1), 119–126. https://doi.org/10.3141/2112-15
  • Koffman, D. (1978). Simulation study of alternative real-time bus headway control strategies. Transportation Research Record, (663), 41–46.
  • Kroes, E., Kouwenhoven, M., Debrincat, L., & Pauget, N. (2014). Value of crowding on public transport in île-de-France, France. Transportation Research Record: Journal of the Transportation Research Board, 2417(1), 37–45. https://doi.org/10.3141/2417-05
  • Li, S., Liu, R., Yang, L., & Gao, Z. (2019). Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty. Transportation Research Part B: Methodological, 123, 88–109. https://doi.org/10.1016/j.trb.2019.03.019
  • Ling, K., & Shalaby, A. (2005). A reinforcement learning approach to streetcar bunching control. Journal of Intelligent Transportation Systems, 9(2), 59–68. https://doi.org/10.1080/15472450590934615
  • Liu, D., Xiao, F., Luo, J., & Yang, F. (2023). Deep reinforcement learning-based holding control for Bus bunching under stochastic travel time and demand. Sustainability, 15(14), 10947. https://doi.org/10.3390/su151410947
  • Liu, Z., Yan, Y., Qu, X., & Zhang, Y. (2013). Bus stop-skipping scheme with random travel time. Transportation Research Part C: Emerging Technologies, 35, 46–56. https://doi.org/10.1016/j.trc.2013.06.004
  • Ma, Q., Li, S., Zhang, H., Yuan, Y., & Yang, L. (2021). Robust optimal predictive control for real-time bus regulation strategy with passenger demand uncertainties in urban rapid transit. Transportation Research Part C: Emerging Technologies, 127, 103086. https://doi.org/10.1016/j.trc.2021.103086
  • Manasra, H., & Toledo, T. (2019). Optimization-based operations control for public transportation service with transfers. Transportation Research Part C: Emerging Technologies, 105, 456–467. https://doi.org/10.1016/j.trc.2019.06.011
  • Moosavi, S. M. H., Yuen, C. W., Yap, S. P., & Onn, C. C. (2020). Simulation-based sensitivity analysis for evaluating factors affecting bus service reliability: A big and smart data implementation. IEEE Access, 8, 201937–201955. https://doi.org/10.1109/ACCESS.2020.3036285
  • Moreira-Matias, L., Cats, O., Gama, J., Mendes-Moreira, J., & De Sousa, J. F. (2016). An online learning approach to eliminate bus bunching in real-time. Applied Soft Computing, 47, 460–482. https://doi.org/10.1016/j.asoc.2016.06.031
  • Moreira-Matias, L., Ferreira, C., Gama, J., Mendes-Moreira, J., & Sousa, J. F. D. (2012). Bus bunching detection by mining sequences of headway deviations. ICDM, Springer, 77-91.
  • Nagatani, T. (2001). Bunching transition in a time-headway model of a bus route. Physic Review, 63(3), 036115.
  • Nassir, N., Hickman, M., & Ma, Z. (2017). Statistical inference of transit passenger boarding strategies from farecard data. Transportation Research Record: Journal of the Transportation Research Board, 2652(1), 8–18. https://doi.org/10.3141/2652-02
  • Nassir, N., Hickman, M., & Ma, Z.-L. (2019). A strategy-based recursive path choice model for public transit smart card data. Transportation Research Part B: Methodological, 126, 528–548. https://doi.org/10.1016/j.trb.2018.01.002
  • Nassir, N., Zhao, J., Attanucci, F., & Wilson, N. (2018). Bayesian inference of passenger boarding strategies at express stops with real-time bus arrival information. The 97th annual meeting of the transportation reseach board, Washington, D.C.
  • Nesheli, M. M., & Ceder, A. (2014). Optimal combinations of selected tactics for public-transport transfer synchronization. Transportation Research Part C: Emerging Technologies, 48, 491–504. https://doi.org/10.1016/j.trc.2014.09.013
  • Newell, G. F., & Pott, R. B. (1964). Maintaining a bus schedule. Australian Road Research Board (ARRB), Melbourne.
  • Osuna, E. E., & Newell, G. F. (1972). Control strategies for an idealized public transportation system. Transportation Science, 6(1), 52–72. https://doi.org/10.1287/trsc.6.1.52
  • Pan, L., Waygood, E. O. D., & Patterson, Z. (2022). Would You wait? Bus choice behavior analysis considering various incentives. Transportation Research Record, 2676(7), 117–127.
  • Phillips, W., del Rio, A., Muñoz, J. C., Delgado, F., & Giesen, R. (2015). Quantifying the effects of driver non-compliance and communication system failure in the performance of real-time bus control strategies. Transportation Research Part A, 78, 463–472.
  • Pi, X., Egge, M., Whitmore, J., Sean Qian, Z., & Silbermann, A. (2018). Understanding transit system performance using AVL-APC data: An analytics platform with case studies for the Pittsburgh Region. Journal of Public Transportation, 21(2), 19–40. https://doi.org/10.5038/2375-0901.21.2.2
  • Preston, J., Pritchard, J., & Waterson, B. (2017). Train overcrowding. Transportation Research Record: Journal of the Transportation Research Board, 2649(1), 1–8. https://doi.org/10.3141/2649-01
  • Rashidi, S., Ranjitkar, P., Csaba, O., & Hooper, A. (2017). Using automatic vehicle location data to model and identify determinants of bus bunching. Transportation Research Procedia, 25, 1444–1456.
  • Rezazada, M., Nassir, N., & Egemen, T. (2022). Public transport bunching: A critical review with focus on methods and findings for implications for policy and future research. Australasian transport research forum 2022 proceedings, Adelaide, Australia.
  • Rezazada, M., Nassir, N., & Egemen, T. (2023). What influences passenger’s arrival rate at stops in Melbourne: Wasea-Lstm, a novel deep learning model leveraging multi-source data fusion. Australasian transport research forum 2023 proceedings, Perth, Australia.
  • Rossetti, M. D., & Turitto, T. (1998). Comparing static and dynamic threshold based control strategies. Transportation Research Part A, 32A(8), 607–620.
  • Saw, V.-L., Vismara, L., & Chew, L. Y. (2020). Intelligent buses in a loop service: Emergence of no-boarding and holding strategies. Complexity, 2020, 7274254. https://doi.org/10.1155/2020/7274254
  • Schmöcker, J. D., Sun, W., Fonzone, A., & Liu, R. (2016). Bus bunching along a corridor served by two lines. Transportation Research Part B: Methodological, 93, 300–317. https://doi.org/10.1016/j.trb.2016.07.005
  • Seman, L. O., Koehler, L. A., Camponogara, E., & Kraus Jr, W. (2020). Integrated headway and bus priority control in transit corridors with bidirectional lane segments. Transportation Research Part C: Emerging Technologies, 111, 114–134. https://doi.org/10.1016/j.trc.2019.12.001
  • Shi, H., Nie, Q., Fu, S., Wang, X., Zhou, Y., & Ran, B. (2021). A distributed deep reinforcement learning–based integrated dynamic bus control system in a connected environment. Computer-Aided Civil and Infrastructure Engineering, 37(15), 2016–2032.
  • Soza-Parra, J., Raveau, S., & Muñoz, J. C. (2022). Public transport reliability across preferences, modes, and space. Transportation, 49(2), 621–640. https://doi.org/10.1007/s11116-021-10188-2
  • Soza-Parra, J., Raveau, S., Muñoz, J. C., & Cats, O. (2019). The underlying effect of public transport reliability on users’ satisfaction. Transportation Research Part A, 126, 83–93.
  • Sun, A., & Hickman, M. (2005). The real-time stop-skipping problem. Journal of Intelligent Transportation Systems, 9(2), 91–109. https://doi.org/10.1080/15472450590934642
  • Sun, W., & Schmöcker, J.-D. (2018). Considering passenger choices and overtaking in the bus bunching problem. Transportmetrica B, 6(2), 151–168.
  • Tian, S., Li, X., Liu, J., Ma, H., & Yu, H. (2022). A short-turning strategy to alleviate bus bunching. Journal of Ambient Intelligence and Humanized Computing, 13(1), 117–128. https://doi.org/10.1007/s12652-020-02891-2
  • Tirachini, A., Cortés, C. E., & Jara-Díaz, S. R. (2011). Optimal design and benefits of a short turning strategy for a bus corridor. Transportation, 38(1), 169–189. https://doi.org/10.1007/s11116-010-9287-8
  • Tirachini, A., Godachevich, J., Cats, O., Muñoz, J. C., & Soza-Parra, J. (2022). Headway variability in public transport: a review of metrics, determinants, effects for quality of service and control strategies. Transport Reviews, 42(3), 337–361. https://doi.org/10.1080/01441647.2021.1977415
  • Tirachini, A., Hensher, D. A., & Rose, J. M. (2013). Crowding in public transport systems: Effects on users, operation and implications for the estimation of demand. Transportation Research Part A, 53, 36–52.
  • Turnquist, M. A., & Bowman, L. A. (1980). The effects of network structure on reliability of transit service. Transportation Research Part B: Methodological, 14(1-2), 79–86. https://doi.org/10.1016/0191-2615(80)90034-X
  • Varga, B., Tettamanti, T., & Kulcsár, B. (2018). Optimally combined headway and timetable reliable public transport system. Transportation Research Part C: Emerging Technologies, 92, 1–26. https://doi.org/10.1016/j.trc.2018.04.016
  • Verbich, D., Diab, E., & El-Geneidy, A. (2016). Have they bunched yet? An exploratory study of the impacts of bus bunching on dwell and running times. Public Transport, 8(2), 225–242. https://doi.org/10.1007/s12469-016-0126-y
  • Wang, J., & Sun, L. (2020). Dynamic holding control to avoid bus bunching: A multi-agent deep reinforcement learning framework. Transportation Research Part C: Emerging Technologies, 116, 102661. https://doi.org/10.1016/j.trc.2020.102661
  • Wang, J., & Sun, L. (2021). Reducing bus bunching with asynchronous multi-agent reinforcement learning. International Joint Conference on Artificial Intelligence, IJCI, 426-433.
  • Wang, J., & Sun, L. (2023). Multi-objective multi-agent deep reinforcement learning to reduce bus bunching for multiline services with a shared corridor. Transportation Research Part C: Emerging Technologies, 155, 104309. https://doi.org/10.1016/j.trc.2023.104309
  • Wang, P., Chen, X., Zheng, Y., Cheng, L., Wang, Y., & Lei, D. (2021). Providing real-time bus crowding information for passengers: A novel policy to promote high-frequency transit performance. Transportation Research Part A, 148, 316–329.
  • Wang, W., Tian, Z., Li, K., & Yu, B. (2019). Real-time short turning strategy based on passenger choice behavior. Journal of Intelligent Transportation Systems, 23(6), 569–582. https://doi.org/10.1080/15472450.2019.1573366
  • Wu, W., Liu, R., & Jin, W. (2017). Modelling bus bunching and holding control with vehicle overtaking and distributed passenger boarding behaviour. Transportation Research Part B: Methodological, 104, 175–197. https://doi.org/10.1016/j.trb.2017.06.019
  • Wu, W., Liu, R., & Jin, W. (2018). Integrating bus holding control strategies and schedule recovery: Simulation-based comparison and recommendation. Journal of Advanced Transportation, 2018. Article ID 9407801.
  • Wu, W., Liu, R., Jin, W., & Ma, C. (2019). Simulation-based robust optimization of limited-stop bus service with vehicle overtaking and dynamics: A response surface methodology. Transportation Research Part E: Logistics and Transportation Review, 130, 61–81. https://doi.org/10.1016/j.tre.2019.08.012
  • Xuan, Y., Argote, J., & Daganzo, C. F. (2011). Dynamic bus holding strategies for schedule reliability: Optimal linear control and performance analysis. Transportation Research Part B: Methodological, 45(10), 1831–1845. https://doi.org/10.1016/j.trb.2011.07.009
  • Yu, H., Chen, D., Wu, Z., Ma, X., & Wang, Y. (2016). Headway-based bus bunching prediction using transit smart card data. Transportation Research Part C: Emerging Technologies, 72, 45–59. https://doi.org/10.1016/j.trc.2016.09.007
  • Zhang, H., Zhao, S., Liu, H., & Li, J. (2017). A dynamic short-turning bus control for uncertain demand. Journal of Advanced Transportation, 2017. Article ID 7392962.
  • Zhao, S., Lu, C., Liang, S., & Liu, H. (2016). A self-adjusting method to resist bus bunching based on boarding limits. Mathematical Problems in Engineering, 2016, 8950209. https://doi.org/10.1155/2016/8950209