1,172
Views
0
CrossRef citations to date
0
Altmetric
Articles

A human-centred review on maritime autonomous surfaces ships: impacts, responses, and future directions

&
Pages 791-810 | Received 24 Feb 2023, Accepted 24 Feb 2024, Published online: 05 Mar 2024

References

  • Aarsæther, K. G., & Moan, T. (2010). Adding the human element to ship manoeuvring simulations. Journal of Navigation, 63(4), 695–716. https://doi.org/10.1017/S037346331000024X
  • Acemoglu, D., & Restrepo, P. (2019). Automation and new tasks: How technology displaces and reinstates labor. Journal of Economic Perspectives, 33(2), 3–30. https://doi.org/10.1257/jep.33.2.3
  • Allal, A. A., et al. (2017). Task human reliability analysis for a safe operation of autonomous ship. 2017 2nd International Conference on System Reliability and Safety (ICSRS). (pp. 74–81).
  • Alsos, O. A., Hodne, P., Skåden, O. K., & Porathe, T. (2022). Maritime autonomous surface ships: Automation transparency for nearby Vessels. Journal of Physics: Conference Series, 2311(1), 0012027. https://doi.org/10.1088/1742-6596/2311/1/012027
  • Autor, D. H. (2015). Why are there still so many jobs? The history and future of workplace automation. Journal of Economic Perspectives, 29(3), 3–30. https://doi.org/10.1257/jep.29.3.3
  • Bachari-Lafteh, M., & Harati-Mokhtari, A. (2021). Operator’s skills and knowledge requirement in autonomous ships control centre. Journal of International Maritime Safety, Environmental Affairs, and Shipping, 5(2), 74–83. https://doi.org/10.1080/25725084.2021.1949842
  • Bainbridge, L. (1983). Ironies of automation. Automatica, 19(6), 775–779. ISSN 0005-1098. https://www.remotexs.ntu.edu.sg/10.1016/0005-1098(83)90046-8.
  • Belev, B., Penev, A., Mohović, Đ, & Perić Hadžić, A. (2021). Autonomous ships in maritime education model course 7.01. Pomorstvo, 35(2), 388–394. https://doi.org/10.31217/p.35.2.20
  • Bogusławski, K., Gil, M., Nasur, J., & Wróbel, K. (2022). Implications of autonomous shipping for maritime education and training: The cadet’s perspective. Maritime Economics & Logistics, 24(2), 327–343. https://doi.org/10.1057/s41278-022-00217-x
  • Brussevich, M., Dabla-Norris, M. E., & Khalid, S. (2019). Is technology widening the gender gap? Automation and the future of female employment. International Monetary Fund.
  • Ceylani, E., Kolçak, İ. Ç., & Solmaz, M. S. (2022). A ranking of critical competencies for future seafarers in the scope of digital Transformation. Proceedings of the International Association of Maritime Universities Conference (International Association of Maritime Universities).
  • Chan, J. P., Norman, R., Pazouki, K., et al. (2022a). Autonomous maritime operations and the influence of situational awareness within maritime navigation. WMU Journal of Maritime Affairs, 21, 121–140. https://www.remotexs.ntu.edu.sg/10.1007/s13437-022-00264-4.
  • Chan, J. P., Pazouki, K., & Norman, R. A. (2022b). An experimental study into the fault recognition of onboard systems by navigational officers. Journal of Marine Engineering & Technology, 1–10.
  • Cheng, T., Utne, I. B., Wu, B., & Wu, Q. (2023). A novel system-theoretic approach for human-system collaboration safety: Case studies on two degrees of autonomy for autonomous ships. Reliability Engineering & System Safety, 237, 109388. https://doi.org/10.1016/j.ress.2023.109388
  • Chinoracký, R., & Čorejová, T. (2019). Impact of digital technologies on labor market and the transport sector. Transportation Research Procedia, 40, 994–1001. https://doi.org/10.1016/j.trpro.2019.07.139
  • Choi, J., & Lee, S. (2022). Legal status of the remote operator in Maritime Autonomous Surface Ships (MASS) under maritime law. Ocean Development & International Law, 52(4), 445–462. https://doi.org/10.1080/00908320.2022.2036276
  • Choi, J. K., & Ji, Y. G. (2015). Investigating the importance of trust on adopting an autonomous vehicle. International Journal of Human-Computer Interaction, 31(10), 692–702. https://doi.org/10.1080/10447318.2015.1070549
  • de Klerk, Y., Manuel, M. E., & Kitada, M. (2021). Scenario planning for an autonomous future: A comparative analysis of national preparedness of selected countries. Marine Policy, 127, 104428. https://doi.org/10.1016/j.marpol.2021.104428
  • Dellner, W. J. (1981). The user’s role in automated fault detection and system recovery. In J. Rasmussen & W. B. Rouse (Eds.), Human detection and diagnosis of system failures . NATO Conference Series (Vol. 15, pp. 487–499). Boston, MA: Springer. https://www.remotexs.ntu.edu.sg/10.1007/978-1-4615-9230-3_30.
  • Dybvik, H., Veitch, E., & Steinert, M. (2020). Exploring Challenges with Designing and Developing Shore Control Centers (SCC) for Autonomous Ships. Proceedings of the Design Society: DESIGN Conference:1: 847–856. https://doi.org/10.1017/dsd.2020.131
  • Emad, G. R., & Ghosh, S. (2023). Identifying essential skills and competencies towards building a training framework for future operators of autonomous ships: A qualitative study. WMU Journal of Maritime Affairs, 1–19.
  • Fan, C., Wróbel, K., Montewka, J., Gil, M., Wan, C., & Zhang, D. (2020). A framework to identify factors influencing navigational risk for Maritime Autonomous Surface Ships. Ocean Engineering, 202, 107188. https://doi.org/10.1016/j.oceaneng.2020.107188
  • Fan, S., Blanco-Davis, E., Fairclough, S., Zhang, J., Yan, X., Wang, J., & Yang, Z. (2023). Incorporation of seafarer psychological factors into maritime safety assessment. Ocean & Coastal Management, 237, 106515. https://doi.org/10.1016/j.ocecoaman.2023.106515
  • Fan, S., Blanco-Davis, E., Yang, Z., Zhang, J., & Yan, X. (2020). Incorporation of human factors into maritime accident analysis using a data-driven Bayesian network. Reliability Engineering & System Safety, 203, 107070. https://doi.org/10.1016/j.ress.2020.107070
  • Fan, S., & Yang, Z. (2023). Towards objective human performance measurement for maritime safety: A new psychophysiological data-driven machine learning method. Reliability Engineering & System Safety, 233, 109103. https://doi.org/10.1016/j.ress.2023.109103
  • Frank, M. R., Autor, D., Bessen, J. E., Brynjolfsson, E., Cebrian, M., Deming, D. J., Feldman, M., Groh, M., Lobo, J., Moro, E., Wang, D., Youn, H., & Rahwan, I. (2019). Toward understanding the impact of artificial intelligence on labor. Proceedings of the National Academy of Sciences, 116(14), 6531–6539. https://doi.org/10.1073/pnas.1900949116
  • Hannaford, E., & Hassel, E. V. (2021). Risks and benefits of crew reduction and/or removal with increased automation on the ship operator: A licensed deck officer’s perspective. Applied Sciences, 11(8), 3569. https://doi.org/10.3390/app11083569
  • Harrald, J. R., Mazzuchi, T. A., Spahn, J., Van Dorp, R., Merrick, J., Shrestha, S., & Grabowski, M. (1998). Using system simulation to model the impact of human error in a maritime system. Safety Science, 30(1–2), 235–247. https://doi.org/10.1016/S0925-7535(98)00048-4
  • Hollnagel, E. (2018). Safety-I and safety-II: The past and future of safety management. CRC Press.
  • Hwang, T., & Youn, I.-H. (2022). Navigation scenario permutation model for training of maritime autonomous surface ship remote Operators. Applied Sciences, 12(3), 1651. https://doi.org/10.3390/app12031651
  • ICS. (2018). Seafarers and digital disruption: The effect of autonomous ships on the work at sea, the role of seafarers and the shipping industry.
  • ICS. (2021a). Shipping and World trade: Global supply and demand for seafarers.
  • ICS. (2021b). Seafarer workforce report.
  • IMO. (2018). IMO takes first steps to address autonomous ships.
  • Inners, M., & Kun, A. L. (2017). Beyond liability: Legal issues of human-machine interaction for automated vehicles. Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 245–253).
  • Iordanoaia, F. (2010). Master of the ship, manager and instructor. Management & Marketing-Craiova, 1s, 133–155.
  • Jo, S., & D'agostini, E. (2020). Disrupting technologies in the shipping industry: How will MASS development affect the maritime workforce in Korea. Marine Policy, 120, 104139. https://doi.org/10.1016/j.marpol.2020.104139
  • Karjalainen, L. E., & Juhola, S. (2021). Urban transportation sustainability assessments: A systematic review of literature. Transport Reviews, 41(5), 659–684. https://doi.org/10.1080/01441647.2021.1879309
  • Kataria, A., & Emad, G. R. (2022). Re-envisioning maritime education and training-technology facilitated lifelong learning for future ship operators. International Association of Maritime Universities Annua General Assembly, 274–279.
  • Kennard, A., Zhang, P., & Rajagopal, S. (2022). Technology and training: How will deck officers transition to operating autonomous and remote-controlled vessels? Marine Policy, 146, 105326. https://doi.org/10.1016/j.marpol.2022.105326
  • Kidd, R., & McCarthy, E. (2019). Maritime education in the age of autonomy. WIT Transactions on The Built Environment, 187, 221–230.
  • Kim, T.-e., & Schröder-Hinrichs, J.-U. (2021). Research developments and debates regarding maritime autonomous surface ship: Status, challenges and perspectives. In B.-W. Ko & D.-W. Song (Eds.), New maritime business: Uncertainty, sustainability, technology and big data (pp. 175–197). Cham: Springer.
  • Kim, T.-e., Sharma, A., Gausdal, A. H., & Chae, C.-j. (2019). Impact of automation technology on gender parity in maritime industry. WMU Journal of Maritime Affairs, 18(4), 579–593. https://doi.org/10.1007/s13437-019-00176-w
  • Lee, J. D., Regan, M. A., & Horrey, W. J. (2020). Workload, distraction, and automation. In D. L. Fisher, W. J. Horrey, J. D. Lee, & M. A. Regan (Eds.), Handbook of human factors for automated, connected, and intelligent vehicles (pp. 107–125). Boca Raton: Imprint CRC Press.
  • Leveson, N. G. (2002). System safety engineering: Back to the future. Massachusetts Institute of Technology.
  • Li, S., & Fung, K. S. (2019). Maritime autonomous surface ships (MASS): Implementation and legal issues. Maritime Business Review, 4(4), 330–339. https://doi.org/10.1108/MABR-01-2019-0006
  • Li, X., Zhou, Y., & Yuen, K. F. (2022). A systematic review on seafarer health: Conditions, antecedents and interventions. Transport Policy, 122, 11–25. https://doi.org/10.1016/j.tranpol.2022.04.010
  • Li, Y., Duan, Z., & Liu, Z. (2019). Study on risk-based operators’ competence assessment of maritime autonomous surface ships. 2019 5th International Conference on Transportation Information and Safety (ICTIS) (pp. 1412–1417). IEEE. https://doi.org/10.1109/ICTIS.2019.8883599.
  • Lokuketagoda, G., et al. (2018). Training engineers for remotely operated ships of the future. 19th Annual General Assembly–AGA 2018 (pp. 207–214).
  • Luchenko, D., Georgiievskyi, I., & Bielikova, M. (2023). Challenges and developments in the public administration of autonomous shipping. Lex Portus, 9(1), 20. https://doi.org/10.26886/2524-101X.9.1.2023.2
  • Lušić, Z., Bakota, M., Čorić, M., & Skoko, I. (2019). Seafarer market – Challenges for the future. Transactions on Maritime Science, 8(01), 62–74. https://doi.org/10.7225/toms.v08.n01.007
  • MacKinnon, S. N., Man, Y., & Baldauf, M. (2015). D8.8: Final Report: Shore Control Centre.
  • Maier, C. (2014). Technostress: Theoretical foundation and empirical evidence. Otto-Friedrich-Universität Bamberg, Fakultät Wirtschaftsinformatik und … .
  • Man, Y., Lundh, M., Porathe, T., & MacKinnon, S. (2015). From desk to field - human factor issues in remote monitoring and controlling of autonomous unmanned vessels. Procedia Manufacturing, 3, 2674–2681. https://doi.org/10.1016/j.promfg.2015.07.635
  • Marine&Offshore. (2024). Different degrees of automation.
  • Miyoshi, T., Fujimoto, S., Rooks, M., Konishi, T., & Suzuki, R. (2022). Rules required for operating maritime autonomous surface ships from the viewpoint of seafarers. Journal of Navigation, 75(2), 384–399. https://doi.org/10.1017/S0373463321000928
  • Muslu, A. (2020). The future of seafarers and the seafarers of the future from the perspective of human resources management. In M. A. Turkmenoglu & B. Cicek (Eds.), Contemporary global issues in human resource management (pp. 219–237). Emerald Publishing Limited.
  • Narayanan, S. C., Emad, G. R., & Fei, J. (2023). Key factors impacting women seafarers’ participation in the evolving workplace: A qualitative exploration. Marine Policy, 148, 105407. https://doi.org/10.1016/j.marpol.2022.105407
  • Ölçer, A. I., Kitada, M., Lagdami, K., Ballini, F., Alamoush, A. S., Masodzadeh, P. G., & Reyes, J. A. (2023). World Maritime University. Malmö: World Maritime University. ISBN: 978-91-987474-8-5. https://doi.org/10.21677/230613.
  • Oldenburg, M., Baur, X., & Schlaich, C. (2010). Occupational risks and challenges of seafaring. Journal of Occupational Health, 52(5), 249–256. https://doi.org/10.1539/joh.K10004
  • Perera, L. P., & Batalden, B.-M. (2019). Possible COLREGs Failures under Digital Helmsman of Autonomous Ships. OCEANS 2019 - Marseille, Marseille, France (pp. 1–7). https://doi.org/10.1109/OCEANSE.2019.8867475
  • Plass, J. L., Moreno, R., & Brünken, R. (2010). Cognitive load theory’.
  • Porathe, T. (2019a). Maritime autonomous surface ships (MASS) and the COLREGs: Do we need quantified rules or is “the ordinary practice of seamen” specific enough?
  • Porathe, T. (2019b). Interaction between manned and autonomous ships: Automation transparency.
  • Ramos, M. A., Thieme, C. A., Utne, I. B., & Mosleh, A. (2020). A generic approach to analysing failures in human – System interaction in autonomy. Safety Science, 129, 104808. https://doi.org/10.1016/j.ssci.2020.104808
  • Ramos, M. A., Utne, I. B., & Mosleh, A. (2018a). On factors affecting autonomous ships operators performance in a Shore Control Center. Proceedings of the 14th probabilistic safety assessment and management, Los Angeles, CA, USA (pp. 16–21).
  • Ramos, M. A., Utne, I. B., & Mosleh, A. (2019). Collision avoidance on maritime autonomous surface ships: Operators’ tasks and human failure events. Safety Science, 116, 33–44. https://doi.org/10.1016/j.ssci.2019.02.038
  • Ramos, M. A., Utne, I. B., Vinnem, J. E., & Mosleh, A. (2018b). Accounting for human failure in autonomous ship operations. In S. Haugen, A. Barros, C. Gulijk, T. Kongsvik, & J. E. Vinnem (Eds.), Safety and reliability–safe societies in a changing world (pp. 355–363). CRC Press.
  • Rødseth, Ø. J., Wennersberg, L. A. L., & Nordahl, H. (2023). Improving safety of interactions between conventional and autonomous ships. Ocean Engineering, 284, 115206. https://doi.org/10.1016/j.oceaneng.2023.115206
  • Saastamoinen, K., Rissanen, A., & Linnervuo, R. (2019). Usage of simulators to boost marine corps learning. Procedia Computer Science, 159, 1011–1018. https://doi.org/10.1016/j.procs.2019.09.268
  • Schröder-Hinrichs, J.-U., Song, D.-W., Fonseca, T., Lagdami, K., & Shi, X. (2019). Transport 2040: Automation, technology, employment-The future of work. (Vol. 2040). Malmö: World Maritime University. ISBN(Online): 978-91-984865-2-0. https://commons.wmu.se/lib_reports/58/.
  • Shahbakhsh, M., Emad, G. R., & Cahoon, S. (2022). Industrial revolutions and transition of the maritime industry: The case of Seafarer’s role in autonomous shipping. The Asian Journal of Shipping and Logistics, 38(1), 10–18. https://doi.org/10.1016/j.ajsl.2021.11.004
  • Sharma, A., & Kim, T.-e. (2021). Exploring technical and non-technical competencies of navigators for autonomous shipping. Maritime Policy & Management, 1–19.
  • Snyder, J. (2023). Disruptive IIoT and AI solutions underpin maritime’s ESG sustainability goals. Riviera. https://www.rivieramm.com/news-content-hub/news-content-hub/disruptive-iiot-and-ai-solutions-underpin-maritimes-esg-sustainability-goals-75292.
  • Tusher, H. M., Sharma, A., Nazir, S., & Munim, Z. H. (2021). Exploring the current practices and future needs of marine engineering education in Bangladesh. Journal of Marine Science and Engineering, 9(10), 1085. https://doi.org/10.3390/jmse9101085
  • UNCTAD. (2021). Review of maritime transport.
  • van den Broek, J., Griffioen, J. R., & van der Drift, M. (2020). Meaningful Human Control in Autonomous Shipping: An Overview. IOP Conference Series: Materials Science and Engineering, 929(1), 012008. https://doi.org/10.1088/1757-899X/929/1/012008.
  • Veitch, E., & Alsos, O. A. (2022). A systematic review of human-AI interaction in autonomous ship systems. Safety Science, 152, 105778. https://doi.org/10.1016/j.ssci.2022.105778
  • Veitch, E., Hynnekleiv, A., & Lützhöft, M. (2020). The operator’s stake in shore control centre design: A stakeholder analysis for autonomous ships. Proceedings of the RINA, Royal Institution of Naval Architects—International Conference on Human Factors.
  • Wahlström, M., Hakulinen, J., Karvonen, H., & Lindborg, I. (2015). Human factors challenges in unmanned ship operations – Insights from other domains. Procedia Manufacturing, 3, 1038–1045. https://doi.org/10.1016/j.promfg.2015.07.167
  • Woo, S.-H., Pettit, S., Beresford, A., & Kwak, D.-W. (2012). Seaport research: A decadal analysis of trends and themes since the 1980s. Transport Reviews, 32(3), 351–377. https://doi.org/10.1080/01441647.2012.660996
  • Wu, X., Liu, K., Zhang, J., Yuan, Z., Liu, J., & Yu, Q. (2021). An optimized collision avoidance decision-making system for autonomous ships under human-machine cooperation situations. Journal of Advanced Transportation, 2021, 1–17.
  • Yoshida, M., Shimizu, E., Sugomori, M., & Umeda, A. (2020). Regulatory requirements on the competence of remote operator in maritime autonomous surface ship: Situation awareness, ship sense and goal-based gap analysis. Applied Sciences, 10(23), 8751. https://doi.org/10.3390/app10238751
  • Yoshida, M., Shimizu, E., Sugomori, M., & Umeda, A. (2021). Identification of the relationship between maritime autonomous surface ships and the operator’s mental workload. Applied Sciences, 11(5), 2331. https://doi.org/10.3390/app11052331
  • Young, M. S., & Lenné, M. G. (2017). Simulators for transportation human factors: Research and practice. CRC Press.
  • Zhang, D., Han, Z., Zhang, K., Zhang, J., Zhang, M., & Zhang, F. (2022). Use of hybrid causal logic method for preliminary hazard analysis of maritime autonomous surface ships. Journal of Marine Science and Engineering, 10(6), 725. https://doi.org/10.3390/jmse10060725
  • Zhang, J., Shu, Y., & Yu, H. (2021). Human-machine interaction for autonomous vehicles: A review. In G. Meiselwitz (Ed.), International Conference on Human-Computer Interaction (pp. 190–201). Springer.
  • Zhang, M. (2020). A probabilistic model of human error assessment for autonomous cargo ships focusing on human–autonomy collaboration. Safety Science, 130, 104838. https://doi.org/10.1016/j.ssci.2020.104838
  • Zhu, T., Haugen, S., & Liu, Y. (2019). Human factor challenges and possible solutions for the operation of highly autonomous ships. Proceedings of the 29th European Safety and Reliability Conference, Hannover, Germany (pp. 22–26).