937
Views
0
CrossRef citations to date
0
Altmetric
Articles

A scoping review on cycling network connectivity and its effects on cycling

ORCID Icon, ORCID Icon &
Pages 912-936 | Received 24 Dec 2023, Accepted 21 Mar 2024, Published online: 27 Apr 2024

References

  • Abad, L., & van der Meer, L. (2018). Quantifying bicycle network connectivity in Lisbon using open data. Information (Switzerland), 9(11). https://doi.org/10.3390/info9110287
  • Aldred, R., Elliott, B., Woodcock, J., & Goodman, A. (2017). Cycling provision separated from motor traffic: A systematic review exploring whether stated preferences vary by gender and age. Transport Reviews, 37(1), 29–55. https://doi.org/10.1080/01441647.2016.1200156
  • Bearn, C., Mingus, C., & Watkins, K. (2018). An adaption of the level of traffic stress based on evidence from the literature and widely available data. Research in Transportation Business & Management, 29, 50–62. https://doi.org/10.1016/j.rtbm.2018.12.002
  • Beecham, R., Yang, Y., Tait, C., & Lovelace, R. (2023). Connected bikeability in London: Which localities are better connected by bike and does this matter? Environment and Planning B: Urban Analytics and City Science, 50(8), 2103–2117. https://doi.org/10.1177/23998083231165122
  • Bernhoft, I. M., & Carstensen, G. (2008). Preferences and behaviour of pedestrians and cyclists by age and gender. Transportation Research Part F: Traffic Psychology and Behaviour, 11(2), 83–95. https://doi.org/10.1016/j.trf.2007.08.004
  • Bhowmick, D., Saberi, M., Stevenson, M., Thompson, J., Winters, M., Nelson, T., Leao, S. Z., Seneviratne, S., Pettit, C., Vu, H. L., Nice, K., & Beck, B. (2023). A systematic scoping review of methods for estimating link-level bicycling volumes. Transport Reviews, 43(4), 622–651. https://doi.org/10.1080/01441647.2022.2147240
  • Bianchi, F. (2021). Learning from experience: A set of European policies. In P. Pileri, & R. Moscarelli (Eds.), Research for development: Cycling & walking for regional development (pp. 177–204). Springer. https://doi.org/10.1007/978-3-030-44003-9_13
  • Boeing, G. (2017). OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Computers, Environment and Urban Systems, 65, 126–139. https://doi.org/10.1016/j.compenvurbsys.2017.05.004
  • Boisjoly, G., & El-Geneidy, A. M. (2017). The insider: A planners’ perspective on accessibility. Journal of Transport Geography, 64, 33–43. https://doi.org/10.1016/j.jtrangeo.2017.08.006
  • Boisjoly, G., Lachapelle, U., & El-Geneidy, A. (2020). Bicycle network performance: Assessing the directness of bicycle facilities through connectivity measures, a Montreal, Canada case study. International Journal of Sustainable Transportation, 14(8), 620–634. https://doi.org/10.1080/15568318.2019.1595791
  • Bres, R., Peralta, V., Le-Guilcher, A., Devogele, T., Olteanu Raimond, A.-M., & de Runz, C. (2023). Analysis of cycling network evolution in OpenStreetMap through a data quality prism. 26th agile conference on geographic information science 2023, Delft, the Netherlands, AGILE: Giscience Series, 4, 3. https://doi.org/10.5194/agile-giss-4-3-2023
  • Broach, J., & Dill, J. (2016). Using predicted bicyclist and pedestrian route choice to enhance mode choice models. Transportation Research Record: Journal of the Transportation Research Board, 2564(1), 52–59. https://doi.org/10.3141/2564-06
  • Buehler, R., & Dill, J. (2016). Bikeway networks: A review of effects on cycling. Transport Reviews, 36(1), 9–27. https://doi.org/10.1080/01441647.2015.1069908
  • Cabral, L., & Kim, A. M. (2022). An empirical reappraisal of the level of traffic stress framework for segments. Travel Behaviour and Society, 26, 143–158. https://doi.org/10.1016/j.tbs.2021.09.007
  • Cabral, L., Kim, A. M., & Shirgaokar, M. (2019). Low-stress bicycling connectivity: Assessment of the network build-out in Edmonton, Canada. Case Studies on Transport Policy, 7(2), 230–238. https://doi.org/10.1016/j.cstp.2019.04.002
  • Castañon, U. N., & Ribeiro, P. J. G. (2021). Bikeability and emerging phenomena in cycling: Exploratory analysis and review. Sustainability (Switzerland), 13(4), 1–21. https://doi.org/10.3390/su13042394
  • Cervero, R., Denman, S., & Jin, Y. (2019). Network design, built and natural environments, and bicycle commuting: Evidence from British cities and towns. Transport Policy, 74, 153–164. https://doi.org/10.1016/j.tranpol.2018.09.007
  • Chan, E. Y. C., & Cooper, C. H. V. (2019). Using road class as a replacement for predicted motorized traffic flow in spatial network models of cycling. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-55669-8
  • Chiaradia, A., Cooper, C. H., & Wedderburn, M. (2014). Network geography and accessibility. In 12th transport practitioners’ meeting. PTRC.
  • Chou, K.-Y., Paulsen, M., Nielsen, O. A., & Jensen, A. F. (2023). Analysis of cycling accessibility using detour ratios – A large-scale study based on crowdsourced GPS data. Sustainable Cities and Society, 93, 104500. https://doi.org/10.1016/j.scs.2023.104500
  • Cooper, C. H. V. (2015). Spatial localization of closeness and betweenness measures: A self-contradictory but useful form of network analysis. International Journal of Geographical Information Science, 29(8), 1293–1309. https://doi.org/10.1080/13658816.2015.1018834
  • Cooper, C. H. V. (2017). Using spatial network analysis to model pedal cycle flows, risk and mode choice. Journal of Transport Geography, 58, 157–165. https://doi.org/10.1016/j.jtrangeo.2016.12.003
  • Cooper, C. H. V. (2018). Predictive spatial network analysis for high-resolution transport modeling, applied to cyclist flows, mode choice, and targeting investment. International Journal of Sustainable Transportation, 12(10), 714–724. https://doi.org/10.1080/15568318.2018.1432730
  • Cooper, C. H. V., & Chiaradia, A. J. F. (2020). sDNA: 3-d spatial network analysis for GIS, CAD, Command Line & Python. SoftwareX, 12, 100525. https://doi.org/10.1016/j.softx.2020.100525
  • Cooper, C. H. V., Harvey, I., Orford, S., & Chiaradia, A. J. F. (2021). Using multiple hybrid spatial design network analysis to predict longitudinal effect of a major city centre redevelopment on pedestrian flows. Transportation, 48(2), 643–672. https://doi.org/10.1007/s11116-019-10072-0
  • Costa, M., Marques, M., & Moura, F. (2021). A circuity temporal analysis of urban street networks using open data: A Lisbon case study. ISPRS International Journal of Geo-Information, 10(7), 453. https://doi.org/10.3390/ijgi10070453
  • Cunha, I., & Silva, C. (2023). Assessing the equity impact of cycling infrastructure allocation: Implications for planning practice. Transport Policy, 133, 15–26. https://doi.org/10.1016/j.tranpol.2022.12.021
  • Doran, A., El-Geneidy, A., & Manaugh, K. (2021). The pursuit of cycling equity: A review of Canadian transport plans. Journal of Transport Geography, 90, 102927. https://doi.org/10.1016/j.jtrangeo.2020.102927
  • Ellis, G., Hunter, R., Tully, M. A., Donnelly, M., Kelleher, L., & Kee, F. (2016). Connectivity and physical activity: Using footpath networks to measure the walkability of built environments. Environment and Planning B: Planning and Design, 43(1), 130–151. https://doi.org/10.1177/0265813515610672
  • Feng, C., & Zhang, W. (2019). Algorithms for the parametric analysis of metric, directional, and intersection reach. Environment and Planning B: Urban Analytics and City Science, 46(8), 1422–1438. https://doi.org/10.1177/2399808319827299
  • Ferster, C., Fischer, J., Manaugh, K., Nelson, T., & Winters, M. (2020). Using OpenStreetMap to inventory bicycle infrastructure: A comparison with open data from cities. International Journal of Sustainable Transportation, 14(1), 64–73. https://doi.org/10.1080/15568318.2018.1519746
  • Fishman, E. (2016). Cycling as transport. Transport Reviews, 36(1), 1–8. https://doi.org/10.1080/01441647.2015.1114271
  • Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 35–41. https://doi.org/10.2307/3033543
  • Furth, P. G., Mekuria, M. C., & Nixon, H. (2016). Network connectivity for low-stress bicycling. Transportation Research Record: Journal of the Transportation Research Board, 2587(1), 41–49. https://doi.org/10.3141/2587-06
  • Furth, P. G., Putta, T. V. V. K., & Moser, P. (2018). Measuring low-stress connectivity in terms of bike-accessible jobs and potential bike-to-work trips: A case study evaluating alternative bike route alignments in Northern Delaware. Journal of Transport and Land Use, 11(1), 815–831. https://doi.org/10.5198/jtlu.2018.1159
  • Gehrke, S. R., Akhavan, A., Furth, P. G., Wang, Q., & Reardon, T. G. (2020). A cycling-focused accessibility tool to support regional bike network connectivity. Transportation Research Part D: Transport and Environment, 85, 102388. https://doi.org/10.1016/j.trd.2020.102388
  • Geurs, K. T., & van Wee, B. (2004). Accessibility evaluation of land-use and transport strategies. Review and Research Directions. Journal of Transport Geography, 12(2), 127–140. https://doi.org/10.1016/j.jtrangeo.2003.10.005
  • Gholamialam, A., & Matisziw, T. C. (2019). Modeling bikeability of urban systems. Geographical Analysis, 51(1), 73–89. https://doi.org/10.1111/gean.12159
  • Goodman, A., Brand, C., & Ogilvie, D. (2012). Associations of health, physical activity and weight status with motorised travel and transport carbon dioxide emissions: A cross-sectional, observational study. Environmental Health: A Global Access Science Source, 11(52), PMC3536622. https://doi.org/10.1186/1476-069X-11-52
  • Heinen, E., van Wee, B., & Maat, K. (2010). Commuting by bicycle: An overview of the literature. Transport Reviews, 30(1), 59–96. https://doi.org/10.1080/01441640903187001
  • Henderson, J., & Gulsrud, N. M. (2019). Street fights in Copenhagen: Bicycle and car politics in a green mobility city. Routledge.
  • Hillier, W. R. G., Yang, T., & Turner, A. (2012). Normalising least angle choice in Depthmap – And how it opens up new perspectives on the global and local analysis of city space. Journal of Space Syntax, 3(2), 155–193.
  • Hochmair, H. H., Bardin, E., & Ahmouda, A. (2019). Estimating bicycle trip volume for Miami-Dade County from Strava tracking data. Journal of Transport Geography, 75, 58–69. https://doi.org/10.1016/j.jtrangeo.2019.01.013
  • Imani, A. F., Miller, E. J., & Saxe, S. (2019). Cycle accessibility and level of traffic stress: A case study of Toronto. Journal of Transport Geography, 80, 102496. https://doi.org/10.1016/j.jtrangeo.2019.102496
  • Kazemzadeh, K., Laureshyn, A., Hiselius, L. W., & Ronchi, E. (2020). Expanding the scope of the bicycle level-of-service concept: A review of the literature. Sustainability, 12(7), 2944. https://doi.org/10.3390/su12072944
  • Kent, M., & Karner, A. (2019). Prioritizing low-stress and equitable bicycle networks using neighborhood-based accessibility measures. International Journal of Sustainable Transportation, 13(2), 100–110. https://doi.org/10.1080/15568318.2018.1443177
  • Knight, P. L., & Marshall, W. E. (2015). The metrics of street network connectivity: Their inconsistencies. Journal of Urbanism, 8(3), 241–259. https://doi.org/10.1080/17549175.2014.909515
  • Lamu, A. N., Jbaily, A., Verguet, S., Robberstad, B., & Norheim, O. F. (2020). Is cycle network expansion cost-effective? A health economic evaluation of cycling in Oslo. BMC Public Health, 20(1869). https://doi.org/10.1186/s12889-020-09764-5
  • Landis, B. W., Vattikuti, V. R., & Brannick, M. T. (1997). Real-time human perceptions: Toward a bicycle level of service. Transportation Research Record: Journal of the Transportation Research Board, 1578(1), 119–126. https://doi.org/10.3141/1578-15
  • Law, S., Sakr, F. L., & Martinez, M. (2014). Measuring the changes in aggregate cycling patterns between 2003 and 2012 from a space syntax perspective. Behavioral Sciences, 4(3), 278–300. https://doi.org/10.3390/bs4030278
  • Lee, K., & Sener, I. N. (2021). Strava Metro data for bicycle monitoring: A literature review. Transport Reviews, 41(1), 27–47. https://doi.org/10.1080/01441647.2020.1798558
  • Lowry, M., Callister, D., Gresham, M., & Moore, B. (2012). Assessment of communitywide bikeability with bicycle level of service. Transportation Research Record: Journal of the Transportation Research Board, 2314(1), 41–48. https://doi.org/10.3141/2314-06
  • Lowry, M., & Loh, T. H. (2017). Quantifying bicycle network connectivity. Preventive Medicine, 95, S134–S140. https://doi.org/10.1016/j.ypmed.2016.12.007
  • Lowry, M. B., Furth, P., & Hadden-Loh, T. (2016). Prioritizing new bicycle facilities to improve low-stress network connectivity. Transportation Research Part A: Policy and Practice, 86, 124–140. https://doi.org/10.1016/j.tra.2016.02.003
  • Manum, B., & Nordstrom, T. (2013). Integrating bicycle network analysis in urban design: Improving bikeability in Trondheim by combining space syntax and GIS-methods using the place syntax tool. 9th International Space Syntax Symposium, 28, Seoul, Korea, 1–14.
  • Manum, B., Nordström, T., Gil, J., Nilsson, L., & Marcus, L. (2017). Modelling bikeability: Space syntax based measures applied in examining speeds and flows of bicycling in Gothenburg. 11th international space syntax symposium, Lisbon, Portugal, 89.1–89.16.
  • Marshall, S., Gil, J., Kropf, K., Tomko, M., & Figueiredo, L. (2018). Street network studies: From networks to models and their representations. Networks and Spatial Economics, 18(3), 735–749. https://doi.org/10.1007/s11067-018-9427-9
  • Marshall, W. E., & Garrick, N. W. (2012). Community design and how much we drive. Journal of Transport and Land Use, 5(2), 5–21. https://doi.org/10.5198/jtlu.v5i2.301
  • Martinez, A., Phair, C., Russo, B., & Gehrke, S. (2024). Exploring neighborhood differences in bicycling accessibility to physical and virtual workplaces. Transportation Research Record: Journal of the Transportation Research Board, 2678(3), 108–121. https://doi.org/10.1177/03611981231178811
  • McCahill, C., & Garrick, N. (2008). The applicability of space syntax to bicycle facility planning. Transportation Research Record: Journal of the Transportation Research Board, 2074(1), 46–51. https://doi.org/10.3141/2074-06
  • McDaniel, S., Lowry, M. B., & Dixon, M. (2014). Using origin-destination centrality to estimate directional bicycle volumes. Transportation Research Record: Journal of the Transportation Research Board, 2430(1), 12–19. https://doi.org/10.3141/2430-02
  • Mekuria, M. C., Furth, P. G., & Nixon, H. (2012). Low-stress bicycling and network connectivity.
  • Mölenberg, F. J. M., Panter, J., Burdorf, A., & Van Lenthe, F. J. (2019). A systematic review of the effect of infrastructural interventions to promote cycling: Strengthening causal inference from observational data. International Journal of Behavioral Nutrition and Physical Activity, 16(1), 93. https://doi.org/10.1186/s12966-019-0850-1
  • Moran, S. K., Tsay, W., Lawrence, S., & Krykewycz, G. R. (2018). Lowering bicycle stress one link at a time: Where should we invest in infrastructure? Transportation Research Record: Journal of the Transportation Research Board, 2672(36), 33–41. https://doi.org/10.1177/0361198118783109
  • Mueller, N., Rojas-Rueda, D., Salmon, M., Martinez, D., Ambros, A., Brand, C., de Nazelle, A., Dons, E., Gaupp-Berghausen, M., Gerike, R., Götschi, T., Iacorossi, F., Int Panis, L., Kahlmeier, S., Raser, E., Nieuwenhuijsen, M., & PASTA consortium. (2018). Health impact assessment of cycling network expansions in European cities. Preventive Medicine, 109, 62–70. https://doi.org/10.1016/j.ypmed.2017.12.011
  • Murphy, B., & Owen, A. (2019). Implementing low-stress bicycle routing in national accessibility evaluation. Transportation Research Record: Journal of the Transportation Research Board, 2673(5), 240–249. https://doi.org/10.1177/0361198119837179
  • Nordström, T., & Manum, B. (2015). Measuring bikeability: Space syntax based methods applied in planning for improved conditions for bicycling in Oslo. 10th international space syntax symposium. London, UK, 13–17.
  • Orellana, D., & Guerrero, M. L. (2019a). Exploring the influence of road network structure on the spatial behaviour of cyclists using crowdsourced data. Environment and Planning B: Urban Analytics and City Science, 46(7), 1314–1330. https://doi.org/10.1177/2399808319863810
  • Orellana, D., & Guerrero, M. L. (2019b). The influence of space syntax on cycling movement in Manta, Ecuador. 12th international space syntax symposium, Beijing, People’s Republic of China, 227.
  • Orozco, L. G. N., Battiston, F., Iniguez, G., & Szell, M. (2020). Data-driven strategies for optimal bicycle network growth. Royal Society Open Science, 7(12), 201130. https://doi.org/10.1098/rsos.201130
  • Ospina, J. P., Duque, J. C., Botero-Fernández, V., & Brussel, M. (2022a). Understanding the effect of sociodemographic, natural and built environment factors on cycling accessibility. Journal of Transport Geography, 102, 103386. https://doi.org/10.1016/j.jtrangeo.2022.103386
  • Ospina, J. P., Duque, J. C., Botero-Fernández, V., & Montoya, A. (2022b). The maximal covering bicycle network design problem. Transportation Research Part A: Policy and Practice, 159, 222–236. https://doi.org/10.1016/j.tra.2022.02.004
  • Pafka, E., Dovey, K., & Aschwanden, G. D. (2020). Limits of space syntax for urban design: Axiality, scale and sinuosity. Environment and Planning B: Urban Analytics and City Science, 47(3), 508–522. https://doi.org/10.1177/2399808318786512
  • Panter, J., Guell, C., Humphreys, D., & Ogilvie, D. (2019). Title: Can changing the physical environment promote walking and cycling? A systematic review of what works and how. Health & Place, 58, 102161. https://doi.org/10.1016/j.healthplace.2019.102161
  • Perez, B. O., Buck, D., Ma, Y. W., Robey, T., & Lucas, K. (2017). Mind the gap: Assessing the impacts of bicycle accessibility and mobility on mode share in Washington, D.C. Transportation Research Record: Journal of the Transportation Research Board, 2662(1), 83–92. https://doi.org/10.3141/2662-10
  • Pucher, J., & Buehler, R. (2017). Cycling towards a more sustainable transport future. Transport Reviews, 37(6), 689–694. https://doi.org/10.1080/01441647.2017.1340234
  • Putta, T., & Furth, P. G. (2019). Method to identify and visualize barriers in a low-stress bike network. Transportation Research Record: Journal of the Transportation Research Board, 2673(9), 452–460. https://doi.org/10.1177/0361198119847617
  • Putta, T., & Furth, P. G. (2021). Impact of one-way streets and contraflow on low-stress bicycle network connectivity. Transportation Research Record: Journal of the Transportation Research Board, 2675(10), 1174–1183. https://doi.org/10.1177/03611981211014893
  • Quattrone, G., Mashhadi, A., & Capra, L. (2014). Mind the map: The impact of culture and economic affluence on crowd-mapping behaviours. 17th acm Conference on Computer Supported Cooperative Work & Social Computing (CSCW 2014). Association for Computing Machinery, NY, USA, 934–944.
  • Reggiani, G., van Oijen, T., Hamedmoghadam, H., Daamen, W., Vu, H. L., & Hoogendoorn, S. (2022). Understanding bikeability: A methodology to assess urban networks. Transportation, 49(3), 897–925. https://doi.org/10.1007/s11116-021-10198-0
  • Rosas-Satizábal, D., Guzman, L. A., & Oviedo, D. (2020). Cycling diversity, accessibility, and equality: An analysis of cycling commuting in Bogotá. Transportation Research Part D: Transport and Environment, 88, 102562. https://doi.org/10.1016/j.trd.2020.102562
  • Rupi, F., Poliziani, C., & Schweizer, J. (2019). Data-driven bicycle network analysis based on traditional counting methods and GPS traces from smartphone. ISPRS International Journal of Geo-Information, 8(8), 322. https://doi.org/10.3390/ijgi8080322
  • Ryu, S., Chen, A., Su, J., & Choi, K. (2018). Two-stage bicycle traffic assignment model. Journal of Transportation Engineering Part A: Systems, 144(2).
  • Ryu, S., Chen, A., Su, J., & Choi, K. (2021a). A multi-class, multi-criteria bicycle traffic assignment model. International Journal of Sustainable Transportation, 15(7), 524–540. https://doi.org/10.1080/15568318.2020.1770906
  • Ryu, S., Chen, A., Su, J., Liu, X., & Yu, J. (2021b). Considering space syntax in bicycle traffic assignment with one or more user classes. Sustainability (Switzerland), 13(19). https://doi.org/10.3390/su131911078
  • Saxe, S., & Kasraian, D. (2020). Rethinking environmental LCA life stages for transport infrastructure to facilitate holistic assessment. Journal of Industrial Ecology, 24(5), 1031–1046. https://doi.org/10.1111/jiec.13010
  • Semler, C., Sanders, M., Buck, D., Dock, S., Cesme, B., & Wang, S. (2018). The keys to connectivity: The district of Columbia’s innovative approach to unlocking low-stress bicycle networks. Transportation Research Record: Journal of the Transportation Research Board, 2672(36), 63–72. https://doi.org/10.1177/0361198118798445
  • Soltani, A., Allan, A., Javadpoor, M., & Lella, J. (2022). Space syntax in analysing bicycle commuting routes in inner metropolitan Adelaide. Sustainability (Switzerland), 14(6). https://doi.org/10.3390/su14063485
  • Stangl, P. (2012). The pedestrian route directness test: A new level-of-service model. Urban Design International, 17(3), 228–238. https://doi.org/10.1057/udi.2012.14
  • Szell, M., Mimar, S., Perlman, T., Ghoshal, G., & Sinatra, R. (2022). Growing urban bicycle networks. Scientific Reports, 12(1), 6765. https://doi.org/10.1038/s41598-022-10783-y
  • Vale, D. S., Saraiva, M., & Pereira, M. (2016). Active accessibility: A review of operational measures of walking and cycling accessibility. Journal of Transport and Land Use, 9(1), 209–235. http://doi.org/10.5198/jtlu.2015.593
  • Vierø, A. R., Vybornova, A., & Szell, M. (2023). BikeDNA: A tool for bicycle infrastructure data and network assessment. Environment and Planning B: Urban Analytics and City Science, 51(2), 512–528. https://doi.org/10.1177/23998083231184471
  • Vybornova, A., Cunha, T., Guhnemann, A., & Szell, M. (2022). Automated detection of missing links in bicycle networks. Geographical Analysis, 55(2), 239–267. https://doi.org/10.1111/gean.12324
  • Wang, K. L., Akar, G., Lee, K., & Sanders, M. (2020). Commuting patterns and bicycle level of traffic stress (LTS): Insights from spatially aggregated data in Franklin County, Ohio. Journal of Transport Geography, 86, 102751. https://doi.org/10.1016/j.jtrangeo.2020.102751
  • Wasserman, D., Rixey, A., Zhou, X. Y., Levitt, D., & Benjamin, M. (2019). Evaluating OpenStreetMap’s performance potential for level of traffic stress analysis. Transportation Research Record: Journal of the Transportation Research Board, 2673(4), 284–294. https://doi.org/10.1177/0361198119836772
  • Wilson, A., & Mitra, R. (2020). Implementing cycling infrastructure in a politicized space: Lessons from Toronto, Canada. Journal of Transport Geography, 86, 102760. https://doi.org/10.1016/j.jtrangeo.2020.102760
  • Wysling, L., & Purves, R. S. (2022). Where to improve cycling infrastructure? Assessing bicycle suitability and bikeability with open data in the city of Paris. Transportation Research Interdisciplinary Perspectives, 15, 100648. https://doi.org/10.1016/j.trip.2022.100648
  • Yang, Y., Wu, X., Zhou, P., Gou, Z., & Lu, Y. (2019). Towards a cycling-friendly city: An updated review of the associations between built environment and cycling behaviors (2007–2017). Journal of Transport & Health, 14, 100613. https://doi.org/10.1016/j.jth.2019.100613
  • Zuo, T., & Wei, H. (2019). Bikeway prioritization to increase bicycle network connectivity and bicycle-transit connection: A multi-criteria decision analysis approach. Transportation Research Part A: Policy and Practice, 129, 52–71. https://doi.org/10.1016/j.tra.2019.08.003
  • Zuo, T., Wei, H., & Chen, N. (2021). Incorporating low-stress bicycling connectivity into expanded transit service coverage. Transportation Research Record: Journal of the Transportation Research Board, 2675(4), 79–89. https://doi.org/10.1177/0361198121998956
  • Zuo, T., Wei, H., Chen, N., & Zhang, C. (2020). First-and-last mile solution via bicycling to improving transit accessibility and advancing transportation equity. Cities, 99, 102614. doi:10.1016/j.cities.2020.102614