Publication Cover
Educational Psychology
An International Journal of Experimental Educational Psychology
Volume 38, 2018 - Issue 10
485
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Calculation and word problem-solving skill profiles: relationship to previous skills and interest

Pages 1239-1254 | Received 28 Apr 2017, Accepted 29 Jun 2018, Published online: 25 Aug 2018

References

  • Adams, T. L. (2003). Reading mathematics: More than words can say. The Reading Teacher, 56, 786–795.
  • Aunola, K., Leskinen, E., Lerkkanen, M. K., & Nurmi, J. E. (2004). Developmental dynamics of math performance from preschool to grade 2. Journal of Educational Psychology, 96, 699–713. doi:10.1037/0022-0663.96.4.699
  • Bartlet, D., Ansari, D., Vaessen, A., & Blomert, L. (2014). Cognitive subtypes of mathematics learning difficulties in primary education. Research in Developmental Disabilities, 35, 657–670. doi:10.1016/j.ridd.2013.12.010
  • Bergman, L. R., & Andersson, H. (2010). The person and the variable in developmental psychology. Journal of Psychology, 218, 155–165. doi:10.1027/0044-3409/a000025
  • Björn, P. M., Aunola, K., & Nurmi, J. E. (2014). Primary school text comprehension predicts mathematical word problem- solving skills in secondary school, Educational Psychology, 37, 41. doi:10.1080/01443410.2014.992392
  • Cangelosi, R., Madrid, S., Cooper, S., Olson, J., & Hartter, B. (2013). The negative sign and expressions: Unveiling students’ persistent errors and misconceptions. The Journal of Mathematical Behavior, 32, 60–82. doi:10.1016/j.jmathb.2012.10.002
  • Cirino, P. T., Tolar, T. D., Fuchs, L. S., & Huston-Warren, E. (2016). Cognitive and numerosity predictors of mathematical skills in middle school. Journal of Experimental Child Psychology, 145, 95–119. doi:10.1016/j.jecp.2015.12.010
  • Cleary, T. J., & Chen, P. P. (2009). Self-regulation, motivation, and math achievement in middle school: Variations across grade level and math context. Journal of School Psychology, 47, 129–314. doi:10.1016/j.jsp.2009.04.002
  • Collins, L. M., & Lanza, S. T. (2009). Latent class and latent transition analysis: With applications in the social, behavioral, and health sciences. New Jersey: Wiley.
  • De Corte, E., & Verschaffel, L. (1996). An empirical test of impact of primitive intuitive models of operations on solving word problems with a multiplicative structure. Learning and Instruction, 6, 219–242. doi:10.1016/0959-4752(96)00004-7
  • DeWolf, M., Grounds, M. A., Bassok, M., & Holyok, K. J., (2014). Magnitude comparison with different types of rational numbers. Journal of Experimental Psychology. Human Perception and Performance, 40, 71–82. doi:10.1037/a0032916
  • Duru, A., & Koklu, O. (2011). Middle school students’ reading comprehension of mathematical texts and algebraic equations. International Journal of Mathematical Education in Science and Technology, 42, 447–468. doi:10.1080/0020739X.2010.550938
  • Eccles, J. S. (2005). Subjective task value and the Eccles et al. model of achievement-related choices. In A. J. Elliot & C. S. Dweck (Eds.), Handbook of competence and motivation (pp. 105–121). New York, NY: The Guilford Press.
  • Fischbein, E., Deri, M., Nello, M. S., & Marino, M. S. (1985). The role of implicit models in solving verbal problems in multiplication and division. Journal of Research in Mathematics Education, 16, 3–17.
  • Floyd, R. G., Evans, J. J., & McGrew, K. S. (2003). Relations between measures of Cattell-Horn-Carroll (CHC) cognitive abilities and mathematics achievement across the school-age years. Psychology in the Schools, 40, 155–171. doi:10.1002/pits.10083
  • Fuchs, L. S., & Fuchs, D. (2002). Mathematical problem-solving profiles of students with mathematics disabilities with and without comorbid reading disabilities. Journal of Learning Disabilities, 35, 563–573.
  • Fuchs, L. S., Fuchs, D., Finelli, R., Courey, S. J., Hamlett, C. L., Sones, E. M., & Hope, S. K. (2006). Teaching third graders about real-life mathematical problem solving: A randomized controlled study. The Elementary School Journal, 106, 293–311. http://www.jstor.org/stable/10.1086/503633
  • Fuchs, L. S., Fuchs, D., & Prentice, K. (2004). Responsiveness to mathematical problem-solving instruction: Comparing students at risk of mathematics disability with and without risk of reading disability. Journal of Learning Disabilities, 37, 293–306.
  • Fuchs, L. S., Fuchs, D., Pretice, K., Burch, M., Hamlett, C. L., Owen, R., & Schroeter, K. (2003). Enhancing third-grade students' mathematical problem solving with self-regulated learning strategies. Journal of Educational Psychology, 95, 306–315. doi:10.1037/0022-0663.95.2.306
  • Fuchs, L. S., Gilbert, J. K., Powell, S. R., Cirino, P. T., Fuchs, D., Hamlett, C. L., … Tolar, T. D. (2016). The role of cognitive processes, foundational math skill, and calculation accuracy and fluency in word-problem solving versus prealgebraic knowledge. Developmental Psychology, 52, 2085–2098. doi:10.1037/dev0000227
  • Fuchs, L. S., Powell, S. R., Cirino, P. T., Schumacher, R. F., Marrin, S., Hamlett, C. L., Fuchs, D.,… Changas, P. C. (2014). Does calculation or word-problem instruction provide a stronger route to prealgebraic knowledge? Journal of Educational Psychology, 106, 990–1006. doi:10.1037/a0036793
  • Fuchs, L. S., Schumacher, R. F., Long, J. Namkung, J., Hamlett, C. L., Cirino, P. T.,………. Changas, P. (2013). Improving at-risk learners understanding of fractions. Journal of Educational Psychology, 105, 683–700. doi:10.1037/a0032446
  • Ganor-Stern, D. (2015). Exploring the boundaries of the number – Temporal order association. Experimental Psychology, 62, 198–205. doi:10.1027/1618-3169/a000285
  • Ganor-Stern, D., & Tzelgov, J. (2008). Negative numbers are generated in the mind. Experimental Psychology, 55, 157–163. doi:10.1027/1618-3169.55.3.157
  • Geary, D. C., Bailey, D. H., Littlefield, A., Wood, P., Hoard, M. K., & Nugent, L. (2009). First grade predictors of mathematical learning disability: A latent class trajectory analysis. Cognitive Development, 24, 411–429. doi:10.1016/j.cogdev.2009.10.001
  • Gray, E., Pinto, M., Pitta, D., & Tall, D. (1999). Knowledge construction and diverging thinking in elementary & advanced mathematics. Educational Studies in Mathematics, 38, 111–133. doi:10.1023/A:1003640204118
  • Häfner, I., Flunger, B., Dicke, A.-L., Gaspard, H., Brisson, M. B., Nagengast, B., & Trautwein, U. (2017). Robin Hood effects on motivation in math: Family interest moderates the effects of relevance interventions. Developmental Psychology, 53, 1522–1539. doi:10.1037/dev0000337
  • Holmes, W., & Dowker, A. (2013). Catch up numeracy: A targeted intervention for children who are low-attaining in mathematics. Research in Mathematics Education, 15, 249–265. doi:10.1080/14794802.2013.803779
  • Jõgi, A.-L., & Kikas, E. (2016). Calculation and word problem-solving skills in primary grades – Impact of cognitive abilities and longitudinal interrelations with task-persistent behaviour. British Journal of Educational Psychology, 86, 165–181. doi:10.1111/bjep.12096
  • Jõgi, A.-L., Kikas, E., Lerkkanen, M.-K., & Mägi, K. (2015). Cross-lagged relations between math-related interest, performance goals, and skills in groups of children with different general abilities. Learning and Individual Differences, 39, 105–113. doi:10.1016/j.lindif.2015.03.018
  • Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). Early math matters: Kindergarten number competence and later mathematics outcomes. Developmental Psychology, 45, 850–867. doi:10.1037/a0014939
  • Kikas, E., Peets, K., Palu, A., & Afanasjev, J. (2009). The role of individual and contextual factors in the development of maths skills. Educational Psychology, 29, 541–560. doi:10.1080/01443410903118499
  • Kintsch, W. (2013). Revisiting the construction-integration model of text comprehension and its implications for instruction. In D. Alvermann, N. J. Unrau, & R. B. Ruddell (Eds.), Theoretical models and processes of reading (6th ed., pp. 807–839). Newark: International Reading Association.
  • Köller, O., Baumert, J., & Schnabel, K. (2001). Does interest matter? The relationship between academic interest and achievement in mathematics. Journal for Research in Mathematics Education, 32, 448–470. doi:10.2307/749801
  • Luria, A. (1976). Cognitive development: Its cultural and social foundations. Cambridge, MA: Harvard University Press.
  • Lynn, R., Pullmann, H., & Allik, J. (2003). A new estimate of the IQ in Estonia. Perceptual and Motor Skills, 97, 662–664. doi:10.2466/PMS.97.6.662-664
  • Mägi, K., Lerkkanen, M., Poikkeus, A., Rasku-Puttonen, H., & Kikas, E. (2010). Relations between achievement goal orientations and math achievement in primary grades: A follow‐up study. Scandinavian Journal of Educational Research, 54, 295–312. doi:10.1080/00313831003764545
  • Marsh, H. W., Trautwin, U., Lüdtke, O., Köller, O., & Baumert, J. (2005). Academic self-concept, interest, grades, and standardized test scores: Reciprocal effects models of casual ordering. Child Development, 76, 397–416.
  • Merenluto, K., & Lehtinen, E. (2004). Number concept and conceptual change: Towards a systemic model of the processes of change. Learning and Instruction, 14, 519–534. doi:10.1016/j.learninstruc.2004.06.016
  • Muthén, L. K., & Muthén, B. O. (1998–2015). Mplus user's guide (7th ed.). Los Angeles: Muthén & Muthén.
  • Namkung, J. M., & Fuchs, L. S. (2016). Cognitive predictors of calculations and number line estimation with whole numbers and fractions among at-risk students. Journal of Educational Psychology, 108, 214–228. doi:10.1037/edu0000055
  • OECD (2013). PISA 2012 results: Ready to learn: Students’ engagement, drive and self-beliefs (Vol. 3). OECD Publishing. doi:10.1787/9789264201170-en
  • OECD (2016). PISA 2015 results: Excellence and equity in education (Vol. 1). OECD Publishing. doi:10.1787/9789264266490-en
  • Pintrich, P. R., Smith, D., Garcia, T., & McKeachie, W. (1993). Predictive validity and reliability of the Motivated Strategies for Learning Questionnaire (MSLQ). Educational and Psychological Measurements, 53, 801–813. doi:10.1177/0013164493053003024
  • Raven, J. (1981). Manual for Raven's progressive matrices and mill hill vocabulary scales. Oxford: Oxford Psychologists Press.
  • Renninger, K. A., & Hidi, S. (2011). Revisiting the conceptualization, measurement, and generation of interest. Educational Psychologist, 46, 168–184. doi:10.1080/00461520.2011.587723
  • Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual understanding and procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 93, 346–362. doi:10.1037//0022-0663.93.2.346
  • Siegler, R. S., and Lortie-Forgues, H. (2014). An integrative theory of numerical development. Child Development Perspectives, 8, 144–150. doi:10.1111/cdep.12077
  • Siegler, R. S., & Lortie-Forgues, H. (2015). Conceptual knowledge of fraction arithmetic. Journal of Educational Psychology, 107, 909–918. doi:10.1037/edu0000025
  • Simmo, P. (2016). Üleriigiline 6. klassi matemaatika tasemetöö 2016 (lühikokkuvõte) [Summary of the national math test for Grade 6 in 2016]. Retrieved from http://www.innove.ee/UserFiles/Tasemet%C3%B6%C3%B6d/6.%20klassi%20matemaatika%20e-tasemet%C3%B6%C3%B6st%202016.pdf
  • Soodla, P., Jõgi, A. L., & Kikas, E. (2016). Relationships between teachers' metacognitive knowledge and students' metacognitive knowledge and reading achievement. European Journal of Psychology of Education, 32, 201–218. doi:10.1007/s10212-016-0293-x
  • Sterba, S. K., & Bauer, D. J. (2010). Matching method with theory in person-oriented developmental psychopathology research. Development and Psychopathology, 22, 239–254. Retrieved from doi:10.1017/S0954579410000015
  • Taal, D. (2016). Üleriigiline 3. klassi matemaatika tasemetöö 2016 [Summary of the national math test for Grade 3 in 2016]. Retrieved from http://www.innove.ee/UserFiles/Tasemet%C3%B6%C3%B6d/3.%20klassi%20matemaatika%20tasemet%C3%B6%C3%B6st%202016.pdf
  • Tire, G., Lepmann, T., Jukk, H., Puksand, H., Henno, I., Lindemann, K., & Lorenz, B. (2013). PISA 2012 Eesti tulemused. Tallinn: Innove.
  • Vabariigi Valitsus (2011/2014). Põhikooli ja gümnaasiumi riiklik õppekava. [National Curriculum for Basic Schools and Upper Secondary Schools]. Retrieved from https://www.riigiteataja.ee/akt/129082014020.
  • Viljaranta, J., Tolvanen, A., Aunola, K., & Nurmi, J. E. (2014). The developmental dynamics between interest, self-concept of ability, and academic performance. Scandinavian Journal of Educational Research, 58, 734–756. doi:10.1080/00313831.2014.904419
  • Vlassis, J. (2004). Making sense of the minus sign or becoming flexible in ‘negativity’. Learning and Instruction, 14, 469–484. Retrieved from doi: 10.1016/j.learninstruc.2004.06.012
  • Wigfield, A., & Eccles, J. S. (2000). Expectancy-value theory of achievement motivation. Contemporary Educational Psychology, 25, 68–81. Retrieved from doi: 10.1006/ceps.1999.1015
  • Wigfield, A., & Eccles, J. S. (2002). Development of achievement motivation. San Diego: Academic Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.