321
Views
3
CrossRef citations to date
0
Altmetric
Articles

Asymmetrical Non-Uniform Heat Flux Distributions For Laminar Flow Heat Transfer With Mixed Convection In a Horizontal Circular Tube

, & ORCID Icon

References

  • A. V., Arasu and T., Sornakumar, “Design, manufacture and testing of fiberglass reinforced parabola trough for parabolic trough solar collectors,” Sol. Energy, vol. 81, pp. 1273–1279, 2007. doi:10.1016/j.solener.2007.01.005.
  • S. A., Kalogirou and S., Lloyd, “use of solar parabolic trough collectors for hot water production in cyprus, a feasibility study,” Renewable Energy, vol. 2, no. 2, pp. 117–124, 1992. doi:10.1016/0960-1481(92)90097-M.
  • S. A., Kalogirou, “Solar thermal collectors and applications,” Prog. Energy Combust. Sci., vol. 30, pp. 231–295, 2004. doi:10.1016/j.pecs.2004.02.001.
  • M., Vyas, S. S., Shailendra, S., Surendra, S. S., Dua, and S. P., Pranay, “Thermal performance analysis of water heating system for a parabolic solar concentrator: an experimental model based design,” Int. J. Curr. Eng. Technol., vol. 4, no. 5, pp. 3649–3654, 2014.
  • M., Eck, R., Uhlig, M., Mertins, Häberle, A., and Lerchenmüller, H., “Thermal load of direct steam-generating absorber tubes with large diameter in horizontal linear fresnel collectors,” Heat Transfer Eng., vol. 28, no. 1, pp. 42–48, 2007. doi:10.1080/01457630600985659.
  • I. F., Okafor, J., Dirker, and J. P., Meyer, “Influence of circumferential solar heat flux distribution on the heat transfer coefficients of linear fresnel collector absorber tubes,” Sol. Energy, vol. 107, pp. 381–397, 2014. doi:10.1016/j.solener.2014.05.011.
  • Newell, J. P. H. and A. E., Bergles, “Analysis of combined free and forced convection for fully developed laminar flow in horizontal tubes,” J. Heat Transfer, vol. 92, no. 1, pp. 83–93, 1970. doi:10.1115/1.3449650.
  • R. M., Fand and K. K., Keswani, “Combined transfer natural and forced convection heat from horizontal cylinders to water,” Intr. J. Heat Mass Transfer, vol. 16, pp. 1175–1191, 1973. doi:10.1016/0017-9310(73)90129-4.
  • H. A., Mohammed and Y. K., Salman, “The effects of different entrance sections lengths and heating on free and forced convective heat transfer inside a horizontal circular tube,” Int. Commun. Heat Mass Transfer, vol. 34, pp. 769–784, 2007. doi:10.1016/j.icheatmasstransfer.2007.03.005.
  • Chae, M.-S. and Chung, B.-J., “Laminar mixed-convection experiments in horizontal pipes and derivation of a semi-empirical buoyancy coefficient,” Int. J. Therm. Sci., vol. 84, pp. 335–346, 2014. doi:10.1016/j.ijthermalsci.2014.06.007.
  • A., Lagana, “Mixed convection heat transfer in vertical, horizontal, and inclined pipes,” M. Eng. Thesis, Dept. of Mechanical Engineering, McGill University Montreal, Canada, National Library of Canada, Acquisitions and Bibliographic Services, 1995.
  • H. A., Mohammed and Y. K., Salman, “Experimental investigation of mixed convection heat transfer for thermally developing flow in a horizontal circular cylinder,” Appl. Therm. Eng., vol. 27, pp. 1522–1533, 2007. doi:10.1016/j.applthermaleng.2006.09.023.
  • S., Piva, G. S., Barozzi, and M. W., Collins, “Combined convection and wall conduction effects in laminar pipe flow: numerical predictions and experimental validation under uniform wall heating,” Heat Mass Transfer, vol. 30, pp. 401–409, 1995. doi:10.1007/BF01647444.
  • T., Boufendi and M., Afrid, “The physical aspect of three-dimensional mixed convection in a uniformly heated horizontal pipe,” Sci. Technol., vol. 22, pp. 39–52, 2004.
  • T., Boufendi and M., Afrid, “Three-dimensional conjugate conduction-mixed convection with variable fluid properties in a heated horizontal pipe,” Rev. Energ. Ren., vol. 8, pp. 1–18, 2005.
  • B., Shome, “Effect of uncertainties in fluid properties on mixed convection laminar flow and heat transfer in a uniformly heated smooth tube,” Numer. Heat Transfer, Part A, vol. 35, pp. 875–889, 1999. doi:10.1080/104077899274958.
  • S. V., Prayagi and S. B., Thombre, “Parametric studies on buoyancy induced flow through circular pipes in solar water heating system,” Int. J. Eng. Sci. Technol. (IJEST), vol. 3, no. 1, pp. 616–627, 2011.
  • A., Laouadi, N., Galanis, and Nguyen, C.T., “Laminar fully developed mixed convection in inclined tubes uniformly heated on their outer surface,” Numer. Heat Transfer, Part A, vol. 26, pp. 719–738. 1994. doi:10.1080/10407789408956019.
  • M. A., Bemier and B. R., Baliga, “Conjugate conduction and laminar mixed convection in vertical pipes for upward flow and uniform wall heat flux,” Numer. Heat Transfer. Part A, vol. 21, pp. 313–332, 1992. doi:10.1080/10407789208944879.
  • K., Sadik, R. K., Shah, and W., Aung, Handbook of Single-Phase Convective Heat Transfer, New York: A Wiley-Inter-Science Publication John Wiley & Sons, 1987.
  • R., Ganesan, R., Narayanaswamy, and K., Perumal, “Mixed convection and radiation heat transfer in a horizontal duct with variable wall temperature,” Heat Transfer Eng., vol. 36, no. 4, pp. 335–345, 2015. doi:10.1080/01457632.2014.923978.
  • M., Ashjaee, S., Yazdani, S., Bigham, and T., Yousefi, “Experimental and numerical investigation on free convection from a horizontal cylinder located above an adiabatic surface,” Heat Transfer Eng., vol. 33, no. 3, pp. 213–224, 2012. doi:10.1080/01457632.2011.548623.
  • F., Karimi, H., Xu, Z., Wang, M., Yang, and Y., Zhang, “Numerical simulation of steady mixed convection around two heated circular cylinders in a square enclosure,” Heat Transfer Eng., vol. 37, no.1, pp. 64–75, 2016. doi:10.1080/01457632.2015.1042343.
  • K., Yapici and S., Obut, “Laminar mixed-convection heat transfer in a lid-driven cavity with modified heated wall,” Heat Transfer Eng., vol. 36, no. 3, pp. 303–314, 2015. doi:10.1080/01457632.2014.916160.
  • O., Zeitoun, “Heat transfer for laminar flow in partially heated tubes,” Alex. Eng. J., Alex. Univ., Egypt, vol. 41, no. 2, pp. 205–212, 2002.
  • O., Zeitoun, “Conjugate Laminar Forced Convection in Partially Heated Tubes ACOMEN: Second International Conference on Advanced Computational Methods In Engineering, Belgium,” May 28–31, pp. 1–25, 2002.
  • Patankar, S.V., Numerical Heat Transfer and Fluid Flow, New York, NY: Hemisphere Publishing Corporation, 1980.
  • J. K., Stynes and B., Ihas, Absorber alignment measurement tool for solar parabolic trough collectors,” ASME 6th Int. Conf. Energy Sustainability 10th Fuel Cell Sci., San Diego, California: Engineering and Technology Conference, July 23–26, 2012.
  • J. K., Stynes and B., Ihas, Slope Error Measurement Tool for Solar Parabolic Trough Collectors, Colorado: World Renewable Energy Forum Denver, May 13–17, 2012.
  • J. M., Christian and C. K., Ho, “Finite element modeling and ray tracing of parabolic trough collector for evaluation of optical intercept factor with gravity loading, proceedings,” ASME 5th Int. Conf. Energy Sustainability, Parts A, B, and C, Washington, DC, August 7–10, 2011.
  • Bazdidi-Tehrani, F., M., Aghaamini, and S., Moghaddam, “Radiation effects on turbulent mixed convection in an asymmetrically heated vertical channel,” Heat Transfer Eng., vol. 35, no. 5, pp. 475–497, 2017. doi:10.1080/01457632.2016.1194695.
  • V. V., Satyamurty and R., Repaka, “Superposition relations for forced convective local nusselt numbers for flow through asymmetrically heated parallel-plate channels,” Heat Transfer Eng., vol. 32, no. 6, pp. 476–484, 2011. doi:10.1080/01457632.2010.506170.
  • W. T., Kim and R. F., Boehm, “Laminar buoyancy-enhanced convection flows on repeated blocks with asymmetric heating,” Numer. Heat Transfer, Part A: Appl. Int. J. Comput. Methodol., vol. 22, no. 4, pp. 421–434, 2010. doi:10.1080/10407789208944776.
  • Habchi S. and Acharya S., “Laminar mixed convection in a symmetrically or asymmetrically heated vertical channel,” J. Numer. Heat Transfer, vol. 9, no. 5, pp. 605–618, 2007.
  • D. G., Osborne and F. P., Incropera, “Laminar mixed convection heat transfer for flow between horizontal parallel plates with asymmetric heating,” Int. J. Heat Mass Transfer, vol. 28, no. 1, pp. 207–217, 1985. doi:10.1016/0017-9310(85)90023-7.
  • M., Wirz, Roesle M., and Steinfeld A., “Three-dimensional optical and thermal numerical model of solar tubular receivers in parabolic trough concentrators,” J. Sol. Energy Eng., vol. 134, no. 4, pp. 1–9, 2012. doi:10.1115/1.4007494.
  • Y. A., Cengel and A. J., Ghajar, Heat and Mass Transfer: Fundamentals & Applications, 5th Edition, New York, NY: Published by McGraw-Hill Education, 2015.
  • R. K., Rajput, Heat and Mass Transfer in SI Units, Second Edition, Ram Nagar, New Delhi, India: Published by S. Chand and Company Ltd, 2005.
  • G. N., Tiwari, Solar Energy Fundamental, Design, Modelling and Applications, Delhi, India: Narosa Publishing House, 2006.
  • J., Hameury, B., Hay, and Filtz J-R., Measurement of Total Hemispherical Emissivity Using a Calorimetric Technique, Cedex, France: Laboratoire National de Métrologie d'Essais (LNE), 2005, pp. 1–14.
  • ANSYS Fluent version 14.0, Users’ Guide ANSYS, Release 14.0 Incorporated, Canonsburg, PA, 2011.
  • Popiel C. O. and Wojtkowiak J., “Simple formulas for thermophysical properties of liquid water for heat transfer calculations (from 0°C to 150°C),” Heat Transfer Eng., vol. 19, no. 3, pp. 87–101, 1998. doi:10.1080/01457639808939929.
  • J. H., Ferziger and M., Perifi, Computational Methods for Fluid Dynamics, 3 Rev. Ed., Berlin, Heidelberg, Hong Kong, London, Milan, Paris, Tokyo: Springer, 2002.
  • M., Hallquist, “Heat transfer and pressure drop characteristics of smooth tubes at a constant heat flux in the transitional flow regime,” M. Eng. Thesis, Dept. of Mechanical and Aeronautical Engineering, University of Pretoria, South Africa, 2011.
  • D., Wen and Y., Ding, “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions,” Int. J. Heat Mass Transfer, vol. 47, pp. 5181–5188, 2004. doi:10.1016/j.ijheatmasstransfer.2004.07.012.
  • A. J., Ghajar and Tam, L.-M., “Flow regime map for a horizontal pipe with uniform wall heat flux and three inlet configurations,” Exp. Therm. Fluid Sci., vol. 10, pp. 287–297, 1995. doi:10.1016/0894-1777(94)00107-J.
  • T. A., Moss and D. A., Brosseau, Final Test Results for the Schott HCE on a LS-2 Collector, Solar Technologies, New Mexico: Sandia National Laboratories Albuquerque, 2005.
  • Properties of Syltherm® 800 Heat Transfer Liquid, Midland, MI: Dow Corning Corporation, 1985.
  • R., Forristall, Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver, Colorado: National Renewable Energy Laboratory, 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.