555
Views
8
CrossRef citations to date
0
Altmetric
Articles

One-Phase and Two-Phase Flow in Highly Permeable Porous Media

&

References

  • H. Darcy, Fontaines Publiques de la Ville de Dijon. Paris, France: Dalmont, 1856.
  • M. Muskat, The Flow of Homogeneous Fluids Through Porous Media, International Series in Physics. New York, USA: The Maple Press Company, 1946.
  • A. Bourgeat, M. Quintard, and S. Whitaker, “Eléments de Comparaison entre la Méthode d’Homogénéisation et la Méthode de Prise de Moyenne avec Fermeture,” C. R. Acad. Sci., Paris II, vol. 306, pp. 463–466, 1988.
  • B. Wood, F. Cherblanc, M. Quintard, and S. Whitaker, “Volume averaging for determining the effective dispersion tensor: Closure using periodic unit cells and comparison with ensemble averaging,” Water Resour. Res., vol. 39, no. 6, pp. 1154–1173, 2003.
  • Y. Davit et al., “Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare?” Adv. Water Resour., vol. 62, pp. 178–206, 2013.
  • Y. Davit and M. Quintard, “Theoretical analysis of transport in porous media: Multi-equation and hybrid models for a generic transport problem with non-linear source terms,” in Handbook of Porous Media, K. Vafai, Ed. New York, USA: Taylor & Francis, pp. 245–320, 2015.
  • C. M. Marle, “Application de la Méthode de la thermodynamique des processus Irréversibles à l’Écoulement d’un fluide à travers un milieux poreux,” RILEM Bull., vol. 29, pp. 1066–1071, 1965.
  • C. M. Marle, “On macroscopic equations governing multiphase flow with diffusion and chemical reactions in porous media,” Int. J. Eng. Sci., vol. 20, no. 5, pp. 643–662, 1982.
  • S. Whitaker, “Diffusion and dispersion in porous media,” AIChE J., vol. 13, pp. 420–427, 1967.
  • S. Whitaker, The Method of Volume Averaging. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1999.
  • W. G. Gray and S. M. Hassanizadeh, “Macroscale continuum mechanics for multiphase porous-media flow including phases, interfaces, common lines and common points,” Adv. Water Resour., vol. 21, pp. 261–281, 1998.
  • J. Bensoussan, L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. Amsterdam: North-Holland, 1978.
  • L. Tartar, The General Theory of Homogenization: A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana. Berlin, Germany: Springer, 2009.
  • J.-L. Auriault, C. Boutin, and C. Geindreau, Homogenization of Coupled Phenomena in Heterogeneous Media, vol. 149. London, UK: John Wiley & Sons, 2010.
  • G. Matheron, Les Variables Régionalisées et leur Estimation : une Application de la Théorie des Fonctions Aléatoires aux Sciences de la Nature. Paris: Masson, 1965.
  • L. W. Gelhar, and M. A. Collins, “General analysis of longitudinal dispersion in nonuniform flow,” Water Resour. Res., vol. 7, no. 6, pp. 1511–1521, 1971.
  • G. Dagan, Flow and Transport in Porous Formations. Berlin: Springer-Verlag, 1989.
  • M. Quintard and S. Whitaker, “Transport in ordered and disordered porous media 1: The cellular average and the use of weighting functions,” Transp. Porous Media, vol. 14, pp. 163–177, 1994.
  • M. Quintard and S. Whitaker, “Transport in ordered and disordered porous media 2: Generalized volume averaging,” Transp. Porous Media, vol. 14, pp. 179–206, 1994.
  • M. Quintard and S. Whitaker, “Transport in ordered and disordered porous media 3: Closure and comparison between theory and experiment,” Transp. Porous Media, vol. 15, pp. 31–49, 1994.
  • M. Quintard and S. Whitaker, “Transport in ordered and disordered porous media 4: Computer generated porous media,” Transp. Porous Media, vol. 15, pp. 51–70, 1994.
  • M. Quintard and S. Whitaker, “Transport in ordered and disordered porous media 5: Geometrical results for two-dimensional systems,” Transp. Porous Media, vol. 15, pp. 183–196, 1994.
  • Y. Davit and M. Quintard, “Technical notes on volume averaging in porous media I: How is spatial averaging defined for periodic and quasiperiodic structures,” Transp. Porous Media, vol. 119, no. 3, pp. 555–584, 2017.
  • G. Chauveteau and C. Thirriot, “Régimes d’Écoulement en milieu poreux et Limite à la Loi de darcy,” La Houille Blanche, vol. 2, pp. 141–148, 1967.
  • E. Sanchez-Palencia, “On the asymptotics of the fluid flow past an array of fixed obstacles,” Int. J. Eng. Sci., vol. 20, no. 12, pp. 1291–1301, 1982.
  • S. Whitaker, “Flow in porous media 1: A theoretical derivation of Darcy’s law,” Transp. Porous Media, vol. 1, pp. 3–25, 1986.
  • J. Wodié and T. Levy, “Correction non Linéaire à la Loi de Darcy,” C. R. Acad. Sci. Paris II, vol. 312, pp. 157–161, 1991.
  • C. Mei and J. Auriault, “The effect of weak inertia on flow through a porous medium,” J. Fluid Mech., vol. 222, pp. 647–663, 1991.
  • M. Firdaouss, J. Guermond, and P. Le Quéré, “Non linear corrections to Darcy’s law at low Reynolds numbers,” J. Fluid Mech., vol. 343, pp. 331–350, 1997.
  • E. Skjetne and J. Auriault, “High velocity laminar and turbulent flow in porous media,” Transp. Porous Media, vol. 36, pp. 131–147, 1999.
  • D. Lasseux, A. Abbasian, and A. Ahmadi, “On the stationary macroscopic inertial effects for one-phase flow in ordered and disordered porous media,” Phys. Fluids, vol. 23, pp. 1–19, 2011.
  • S. Pasquier, M. Quintard, and Y. Davit, “Modeling flow in porous media with rough surfaces: Effective slip boundary conditions and application to structured packings,” Chem. Eng. Sci., vol. 165, pp. 131–146, 2017.
  • P. Forchheimer, “Wasserbewegung durch boden,” Z. Ver. Deutsch Ing., vol. 45, pp. 1782–1788, 1901.
  • K. Yazdchi and S. Luding, “Toward unified drag laws for inertial flows through fibrous media,” Chem. Eng. J., vol. 207, pp. 35–48, 2012.
  • S. Ergun, “Fluid flow through packed columns,” Chem. Eng. Progress, vol. 48, no. 2, pp. 89–94, 1952.
  • J. Lage, B. Antohe, and D. Nield, “Two types of non-linear pressure-drop versus flow-rate relation observed for saturated porous media,” Trans. ASME, vol. 119, pp. 700–706, 1997.
  • R. Clavier, N. Chikhi, F. Fichot, and M. Quintard, “Experimental investigation on single-phase pressure losses in nuclear debris beds: Identification of flow regimes and effective diameter,” Nucl. Eng. Des., vol. 292, pp. 222–236, 2015.
  • I. MacDonald, M. El-Sayed, K. Mow, and F. Dullien, “Flow through porous media - The ergun equation revisited,” Ind. Eng. Chem. Fundam., vol. 18, pp. 199–208, 1979.
  • L. Li and W. Ma, “Experimental study on the effective particle diameter of a packed bed with non-spherical particles,” Transp. Porous Media, vol. 89, pp. 35–48, 2011.
  • F. Larachi, R. Hannaoui, P. Horgue, F. Augier, Y. Haroun, S. Youssef, E. Rosenberg, M. Prat, and M. Quintard, “X-Ray micro-tomography and pore network modeling of single-phase fixed-bed reactors,” Chem. Eng. J., vol. 240, pp. 290–306, 2014.
  • K. Vafai and C. L. Tien, “Boundary and inertia effects on flow and heat transfer in porous media,” Int. J. Heat Mass Trans., vol. 24, pp. 195–203, 1981.
  • M. S. Phanikumar and R. L. Mahajan, “Non-Darcy natural convection in high porosity metal foams,” Int. J. Heat Mass Trans., vol. 45, no. 18, pp. 3781–3793, 2002.
  • F. Fichot, F. Duval, N. Trégourès, C. Béchaud, and M. Quintard, “The impact of thermal non-equilibrium and large-scale 2D/3D effects on debris bed reflooding and coolability,” Nucl. Eng. Des., vol. 236, no. 19, pp. 2144–2163, 2006.
  • S. B. Beale, “A Simple, Effective viscosity formulation for turbulent flow and heat transfer in compact heat exchangers,” Heat Trans. Eng., vol. 33, no. 1, pp. 4–11, 2012.
  • A. Bousri, R. Nebbali, R. Bennacer, K. Bouhadef, and H. Beji, “Numerical investigation of forced convection nonequilibrium effects on heat and mass transfer in porous media,” Heat Trans. Eng., vol. 38, no. 1, pp. 122–136, 2017.
  • C. Soulaine and M. Quintard, “On the use of Darcy-Forchheimer like model for a macro-scale description of turbulence in porous media and its application to structured packings,” Int. J. Heat Mass Trans., vol. 74, pp. 88–100, 2014.
  • Y. Jin, M.-F. Uth, A. Kuznetsov, and H. Herwig, “Numerical investigation of the possibility of macroscopic turbulence in porous media: A direct numerical simulation study,” J. Fluid Mech., vol. 766, pp. 76–103, 2015.
  • M. Chandesris, A. D’Hueppe, B. Mathieu, D. Jamet, and B. Goyeau, “Direct numerical simulation of turbulent heat transfer in a fluid-porous domain,” Phys. Fluids, vol. 25, no. 12, pp. 125110, 2013.
  • M. Agnaou, D. Lasseux, and A. Ahmadi, “From steady to unsteady laminar flow in model porous structures: An investigation of the first Hopf bifurcation,” Comput. Fluids, vol. 136, pp. 67–82, 2016.
  • M. de Lemos, Turbulence in Porous Media: Modeling and Applications. London, UK: Elsevier Science Ltd, 2006.
  • B. Antohe and J. Lage, “A general two-equation macroscopic turbulence model for incompressible flow in porous media,” Int. J. Heat Mass Trans., vol. 40, no. 13, pp. 3013–3024, 1997.
  • D. Getachew, W. Minkowycz, and J. Lage, “A modified form of the κ–ϵ model for turbulent flows of an incompressible fluid in porous media,” Int. J. Heat Mass Trans., vol. 43, no. 16, pp. 2909–2915, 2000.
  • F. Kuwahara, Y. Kameyama, S. Yamashita, and A. Nakayama, “Numerical model of turbulent flow in porous media using a spatially periodic array,” J. Porous Media, vol. 1, pp. 47–55, 1998.
  • A. Nakayama and F. Kuwahara, “A macroscopic turbulence model for flow in a porous medium,” J. Fluids Eng., vol. 121, no. 2, pp. 427–433, 1999.
  • M. H. Pedras and M. J. de Lemos, “Macroscopic turbulence modeling for incompressible flow through undeformable porous media,” Int. J. Heat Mass Trans., vol. 44, no. 6, pp. 1081–1093, 2001.
  • Y. Achdou, O. Pironneau, and F. Valentin, “Effective boundary conditions for laminar flows over periodic rough boundaries,” J. Comput. Phys., vol. 147, pp. 187–218, 1998.
  • S. Veran, Y. Aspa, and M. Quintard, “Effective boundary conditions for rough reactive walls in laminar boundary layers,” Int. J. Heat Mass Trans., vol. 52, pp. 3712–3725, 2009.
  • C. Introïni, M. Quintard, and F. Duval, “Effective surface modeling for momentum and heat transfer over rough surfaces: Application to a natural convection problem,” Int. J. Heat Mass Trans., vol. 54, pp. 3622–3641, 2011.
  • R. Lenormand, E. Touboul, and C. Zarcone, “Numerical models and experiments on immiscible displacements in porous media,” J. Fluid Mech., vol. 189, pp. 165–187, 1988.
  • B. Zhao, C. MacMinn, and R. Juanes, “Wettability control on multiphase flow in patterned microfluidics,” Proc. Natl. Acad. Sci. USA, vol. 111, no. 37, pp. 10251–10256, 2016.
  • W. B. Haines, “Studies in the physical properties of soil. v. the hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith,” J. Agric. Sci., vol. 20, no. 1, pp. 97–116, 1930.
  • S. Berg et al., “Real-Time 3D imaging of Haines jumps in porous media flow,” Proc. Natl. Acad. Sci., vol. 110, no. 10, pp. 3755–3759, 2013.
  • T. Ransohoff, P. Gauglitz, and C. Radke, “Snap-Off of gas bubbles in smoothly constricted noncircular capillaries,” AIChE J., vol. 33, no. 5, pp. 753–765, 1987.
  • A. Kovscek and C. Radke, “Gas bubble Snap-Off under Pressure-Driven flow in constricted noncircular capillaries,” Colloids Surf. A: Physicochem. Eng. Aspects, vol. 117, no. 1, pp. 55–76, 1996.
  • B. Legait, “Laminar flow of two phases through a capillary tube with variable square cross-section,” J. Colloid Interf. Sci., vol. 96, no. 1, pp. 28–38, 1983.
  • I. Chatzis, N. R. Morrow, and H. T. Lim, “Magnitude and detailed structure of residual oil saturation,” Soc. Petrol. Eng. J., vol. 23, no. 2, pp. 311–326, 1983.
  • S. Schlüter, S. Berg, M. Rücker, R. Armstrong, H.-J. Vogel, R. Hilfer, and D. Wildenschild, “Pore-scale displacement mechanisms as a source of hysteresis for two-phase flow in porous media,” Water Resour. Res., vol. 52, no. 3, pp. 2194–2205, 2016.
  • N. R. Morrow and C. C. Harris, “Capillary equilibrium in porous materials,” Soc. Petrol. Eng. J., vol. 5, no. 1, pp. 15–24, 1965.
  • F. Kalaydjian, “A macroscopic description of multiphase flow in porous media involving spacetime evolution of fluid/fluid interface,” Transp. Porous Media, vol. 2, no. 6, pp. 537–552, 1987.
  • W. G. Gray and S. M. Hassanizadeh, “Unsaturated flow theory including interfacial phenomena,” Water Resour. Res., vol. 27, no. 8, pp. 1855–1863, 1991.
  • M. Hassanizadeh and W. G. Gray, “Toward an improved description of the physics of two-phase flow,” Adv. Water Resour., vol. 16, no. 1, pp. 53–67, 1993.
  • P. C. Reeves and M. A. Celia, “A functional relationship between capillary pressure, saturation, and interfacial area as revealed by a pore-scale network model,” Water Resour. Res., vol. 32, no. 8, pp. 2345–2358, 1996.
  • F. Dullien, Porous Media: Fluid Transport and Pore Structure. New York, USA: Academic Press, 1979.
  • R. Lenormand, “Liquids in Porous Media,” J. Phys.: Cond. Matter, vol. 2, no. S, pp. SA79–SA88, 1990.
  • J.-L. Auriault, “Nonsaturated deformable porous media: Quasistatics,” Transp. Porous Media, vol. 2, pp. 45–64, 1987.
  • W. Rose, “Measuring transport coefficients necessary for the description of coupled two-phase flow of immiscible fluids in porous media,” Transp. Porous Media, vol. 3, pp. 163–171, 1988.
  • F. Kalaydjian, “Origin and quantification of coupling between relative permeabilities for two-phase flows in porous media,” Transp. Porous Media, vol. 5, pp. 215–229, 1990.
  • D. Lasseux, M. Quintard, and S. Whitaker, “Determination of permeability tensors for two-phase flow in homogeneous porous media: Theory,” Transp. Porous Media, vol. 24, pp. 107–137, 1996.
  • B. J. Bourbiaux and F. J. Kalaydjian, “Experimental study of cocurrent and countercurrent flows in natural porous media,” SPE Reservoir Eng., vol. 5, pp. 361–368, 1990.
  • C. Zarcone and R. Lenormand, “Détermination Expérimentale du couplage visqueux dans les Écoulements diphasiques en milieu poreux,” C. R. Acad. Sci. Paris II, vol. 318, pp. 1429–1435, 1994.
  • W. Rose, “Myths about Later-Day extensions of Darcy’s law,” J. Petrol. Sci. Eng., vol. 26, no. 1–4, pp. 187–198, 2000.
  • J. C. Bacri, M. Chaouche, and D. Salin, “Modèle simple de Perméabilités relatives Croisées,” C. R. Acad. Sci. Paris II, vol. 311, pp. 591–597, 1990.
  • R. Clavier, N. Chikhi, F. Fichot, and M. Quintard, “Modeling of inertial multi-phase flows through high permeability porous media: Friction closure laws,” Int. J. Multiph. Flow, vol. 91, pp. 243–261, 2017.
  • V. Dhir and L. Barleon, “Dryout heat-flux in a bottom-heated porous layer,” Trans. Amer. Nucl. Soc., vol. 38, pp. 385–386, 1981.
  • R. J. Lipinski, “Model for boiling and dryout in particle beds. [LMFBR],” Sandia National Labs., Albuquerque, NM (USA),Technical Rep. NUREG/CR-2646, 1982.
  • T. Schulenberg and U. Müller, “An improved model for two-phase flow through beds of coarse particles,” Int. J. Multiph. Flow, vol. 13, pp. 87–97, 1987.
  • N. Chikhi, R. Clavier, J.-P. Laurent, F. Fichot, and M. Quintard, “Pressure drop and average void fraction measurements for two-phase flow through highly permeable porous media,” Annal. Nuclear Energy, vol. 94, pp. 422–432, 2016.
  • C. L. Hearn, “Simulation of stratified waterflooding by pseudo relative permeability curves,” Paper SPE 2929 presented at the 45th Annual Fall Meeting of the Society of Petroleum Engineers, Houston, October 4, 1970.
  • J. R. Kyte et al., “New pseudo functions to control numerical dispersion,” Soc. Petrol. Eng. J., vol. 15, no. 4, pp. 269–276, 1975.
  • J. Barker and S. Thibeau, “A critical review of the use of pseudorelative permeabilities for upscaling,” SPE Reservoir Eng., vol. 12, pp. 138–143, 1997.
  • M. Quintard and S. Whitaker, “Fundamentals of transport equation formulation for two-phase flow in homogeneous and heterogeneous porous media,” in Vadose Zone Hydrology: Cutting Across Disciplines, M. B. Parlange and J. W. Hopmans, eds. New York: Oxford University Press, 1999, pp. 3–57.
  • A. Hashemi and S. R. Shadizadeh, “The impact of reservoir properties on pseudo functions: Upscaling of relative permeability,” Petrol. Sci. Technol., vol. 32, no. 7, pp. 772–782, 2014.
  • M. Quintard and S. Whitaker, “Two-Phase flow in heterogeneous porous media I: The influence of large spatial and temporal gradients,” Transp. Porous Media, vol. 5, pp. 341–379, 1990.
  • R. Hilfer, “Macroscopic equations of motion for two-phase flow in porous media,” Phys. Rev. E, vol. 58, no. 2, pp. 2090–2096, 1998.
  • M. Panfilov and I. Panfilova, “Phenomenological meniscus model for two-phase flows in porous media,” Transp. Porous Media, vol. 58, no. 1–2, pp. 87–119, 2005.
  • L. Cueto-Felgueroso and R. Juanes, “A phase field model of unsaturated flow,” Water Resour. Res., vol. 45, no. 10, pp. 1–23, 2009.
  • J. Buchlin and A. Stubos, “Phase change phenomena at liquid saturated self heated particulate beds,” in Modelling and Applications of Transport Phenomena in Porous Media, J. Bear. and J. M. Buchlin, eds. Dordrecht, The Netherlands: Springer, 1991, pp. 221–276.
  • M. Fourar, R. Lenormand, and F. Larachi, “Extending the F-function concept to Two-Phase flow in trickle beds,” Chem. Eng. Sci., vol. 56, pp. 5987–5994, 2001.
  • A. Reed, “The effect of channeling on the dryout of heated particulate beds immersed in a liquid pool,” Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 1982.
  • R. J. Lipinski, “A coolability model for post accident nuclear reactor debris,” Nucl. Technol., vol. 65, pp. 53, 1984.
  • K. Hu and T. Theofanous, “On the measurement and mechanism of dryout in volumetrically heated coarse particle beds,” Int. J. Multiph. Flow, vol. 17, pp. 519–532, 1991.
  • D. Lasseux, A. Ahmadi, and A. Arani, “Two-phase inertial flow in homogeneous porous media: A theoretical derivation of a macroscopic model,” Transp. Porous Media, vol. 75, pp. 371–400, 2008.
  • N. Tutu, T. Ginsberg, J. Klein, J. Klages, and C. Schwarz, “Debris bed quenching under bottom flood conditions (in-vessel degraded core cooling phenomenology) [PWR],” Brookhaven National Lab., Upton, Suffolk County, New York, USA, Technical Rep. NUREG/CR-3850, 1984.
  • R. Clavier, N. Chikhi, F. Fichot, and M. Quintard, “Two-phase flow in porous media at high Reynolds number: Discussion of macro-scale models based on new experimental data,” Paper A0207, ISHT-9, Beijing, China, Aug. 15–19, 2016.
  • R. J. Lipinski, “A one-dimensional particle bed dryout model,” Trans. Amer. Nucl. Soc., vol. 38, pp. 386–387, 1981.
  • A.-W. Reed, E.-D. Bergeron, K.-R. Boldt, and T.-R. Schmidt, “Coolability of UO_2 debris beds in pressurized water pools: DCC-1 & DCC-2 experiment results,” Nucl. Eng. Des., vol. 97, pp. 81–88, 1986.
  • V. Tung and V. Dhir, “A hydrodynamic model for two-phase flow through porous media,” Int. J. Multiph. Flow, vol. 14, pp. 47–65, 1988.
  • V. Tung and V. Dhir, “On fluidization of a particulate bed during quenching by flooding from the bottom,” Proceedings of the 6th Information Exchange Meeting on Debris Bed coolability, Los Angeles, CA, USA, Nov. 7–9, 1984, pp. 14–1–14–13, 1986.
  • M. Taherzadeh and M. Saidi, “Modeling of two-phase flow in porous media with heat generation,” Int. J. Multiph. Flow, vol. 69, pp. 115–127, 2015.
  • B. Mahr and D. Mewes, “CFD modelling and calculation of dynamic two-phase flow in columns equipped with structured packing,” Chem. Eng. Res. Des., vol. 85, no. 8, pp. 1112–1122, 2007.
  • B. Mahr and D. Mewes, “Two-phase flow in structured packings: Modeling and calculation on a macroscopic scale,” AIChE J., vol. 54, no. 3, pp. 614–626, 2008.
  • C. Soulaine, Y. Davit, and M. Quintard, “A two-pressure model for slightly compressible single phase flow in bi-structured porous media,” Chem. Eng. Sci., vol. 96, pp. 55–70, 2013.
  • C. Soulaine, P. Horgue, J. Franc, and M. Quintard, “Gas–liquid flow modeling in columns equipped with structured packing,” AIChE J., vol. 60, no. 10, pp. 3665–3674, 2014.
  • M. Fourati, V. Roig, and L. Raynal, “Liquid dispersion in packed columns: Experiments and numerical modeling,” Chem. Eng. Sci., vol. 100, pp. 266–278, 2013.
  • C. Soulaine, “Modélisation des Écoulements dans les garnissages structurés: de l’Échelle du pore à l’Échelle de la colonne,” Ph.D. dissertation, University of Toulouse, Toulouse, France, 2012.
  • F. Augier, A. Koudil, A. Royon-Lebeaud, L. Muszynski, and Q. Yanouri, “Numerical approach to predict wetting and catalyst efficiencies inside trickle bed reactors,” Chem. Eng. Sci., vol. 65, no. 1, pp. 255–260, 2010.
  • J.-C. Charpentier and M. Favier, “Some liquid holdup experimental data in trickle-bed reactors for foaming and nonfoaming hydrocarbons,” AIChE J., vol. 21, no. 6, pp. 1213–1218, 1975.
  • K. Ng and C. Chu, “Trickle-bed reactors,” Chem. Eng. Progr., vol. 83, no. 11, 1987.
  • M. Kondo and K.-I. Nakajima, “Experimental investigation of air-water two phase upflow across horizontal tube bundles: Part 1, flow pattern and void fraction,” Bull. Japan Soc. Mech. Eng., vol. 23, no. 177, pp. 385–393, 1980.
  • T. R. Melli, J. M. De Santos, W. B. Kolb, and L. Scriven, “Cocurrent downflow in networks of passages. Microscale roots of macroscale flow regimes,” Ind. Eng. Chem. Res., vol. 29, no. 12, pp. 2367–2379, 1990.
  • P. Horgue, F. Augier, P. Duru, M. Prat, and M. Quintard, “Experimental and numerical study of two-phase flows in arrays of cylinders,” Chem. Eng. Sci., vol. 102, pp. 335–345, 2013.
  • L. Raynal, F. Augier, F. Bazer-Bachi, Y. Haroun, and C. P. da Fonte, “CFD applied to process development in the oil and gas industry–A review,” Oil Gas Sci. Technol., vol. 71, no. 3, pp. 42, 2015.
  • M. Sahimi, Applications of Percolation Theory. London, UK: CRC Press, 1994.
  • T. R. Melli and L. Scriven, “Theory of two-phase cocurrent downflow in networks of passages,” Ind. Eng. Chem. Res., vol. 30, no. 5, pp. 951–969, 1991.
  • V. Joekar-Niasar and S. Hassanizadeh, “Analysis of fundamentals of two-phase flow in porous media using dynamic pore-network models: A review,” Crit. Rev. Environ. Sci. Technol., vol. 42, no. 18, pp. 1895–1976, 2012.
  • R. Hannaoui, P. Horgue, F. Larachi, Y. Haroun, F. Augier, M. Quintard, and M. Prat, “Pore-network modeling of trickle bed reactors: Pressure drop analysis,” Chem. Eng. J., vol. 262, pp. 334–343, 2015.
  • R. Guibert, P. Horgue, G. Debenest, and M. Quintard, “A comparison of various methods for the numerical evaluation of porous media permeability tensors from Pore-Scale geometry,” Math. Geosci., vol. 48, no. 3, pp. 329–347, 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.