269
Views
24
CrossRef citations to date
0
Altmetric
Articles

Convective Heat Transport in a Heat Generating Porous Layer Saturated by a Non-Newtonian Nanofluid

&

References

  • S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” in Developments and Applications of Non-newtonian Flows, vol. 66, D. A. Siginer and H. P. Wang, Ed(s)., American Society of Mechanical Engineers (ASME) FED 231/MD, New York, 1995, pp. 99–105.
  • Y. M. Xuan and Q. Li, “Investigation on convective heat transfer and flow features of nanofluids,” J. Heat Tran–Trans ASME, vol. 125, no. 1, pp. 151–155, 2003. DOI: 10.1115/1.1532008.
  • S. K. Das, S. Choi, W. Yu, and T. Pradeep, “Nanofluids: science and technology,” Wiley Interscience, New Jersey, 2007.
  • E. Pfautsch, “Forced convection in nanofluids over a flat plate,” Master's thesis, Dept. Mechanical and Aerospace Engineering, University of Missouri, USA, 2008.
  • W. Yu and S.U.S Choi, “The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model,” J. Nanopart. Res., vol. 5, no. 1, pp. 167–171, 2003. DOI: 10.1023/A:1024438603801.
  • R. Saidur, K. Y. Leong, and H. A.Mohammad, “A review on applications and challenges of nanofluids,” Renewable Sustainable Energy Rev., vol. 15, no. 3, pp. 1646–1668, 2011. DOI: 10.1016/j.rser.2010.11.035.
  • S. K. Das, S. U. S. Choi, and H. E. Patel, “Heat transfer in nanofluids—A review,” Heat Transfer Eng., vol. 27, no. 10, pp. 3–19, 2006. DOI: 10.1080/01457630600904593.
  • S. U. S. Choi, “Nanofluids: A new field of scientific research and innovative applications,” Heat Transfer Eng., vol. 29, no. 5, pp. 429–431, 2008. DOI: 10.1080/01457630701850778.
  • V. Trisaksri and S. Wongwises, “Critical review of heat transfer characteristics of nanofluids,” Renewable Sustainable Energy Rev., vol. 11, no. 3, pp. 512–523, 2007. DOI: 10.1016/j.rser.2005.01.010.
  • M. Chandrasekar, S. Suresh, and A. C. Bose, “Experimental studies on heat transfer and friction factor characteristics of Al2O3/Water nanofluid in a circular pipe under laminar flow with wire coil inserts,” Exp. Therm. Fluid Sci., vol. 34, no. 2, pp. 122–130, 2010. DOI: 10.1016/j.expthermflusci.2009.10.001.
  • H. A. Mohammed, G. Bhaskaran, N. H. Shuaib, and R. Saidur, “Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: A review,” Renewable Sustainable Energy Rev., vol. 15, no. 3, pp. 1502–1512, 2011. DOI: 10.1016/j.rser.2010.11.031.
  • K. Y. Leong, R. Saidur, S. N. Kazi, and A. H. Mamun, “Performance investigation of an automotive car radiator operated with nanofluid-based coolants (Nanofluid as a coolant in a radiator),” Appl. Therm. Eng., vol. 30, no. 17–18, pp. 2685–2692, 2010. DOI: 10.1016/j.applthermaleng.2010.07.019.
  • R. Saxena, D. Gangacharyulu, and V. K. Bulasara, “Heat transfer and pressure drop characteristics of dilute alumina–water nanofluids in a pipe at different power inputs,” Heat Transfer Eng., vol. 37, no. 18, pp. 1554–1565, 2016. DOI: 10.1080/01457632.2016.1151298.
  • D. S. Wen and Y. L. Ding, “Experimental investigation into the pool boiling heat transfer of aqueous based gamma-alumina nanofluids,” J. Nanopart. Res., vol. 7, no. 2–3, pp. 265–274, 2005. DOI: 10.1007/s11051-005-3478-9.
  • S. E. B. Maiga, C. T. Nguyen, N. Galanis, and G. Roy, “Heat transfer behaivours of nanofluids in a uniformly heated tube,” Superlattices Microstruct, vol. 35, no. 3–6, pp. 543–557, 2004. DOI: 10.1016/j.spmi.2003.09.012.
  • R. K. Tiwari and M. K. Das, “Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids,” Int. J. Heat Mass Transf., vol. 50, no. 9–10, pp. 2002–2018, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.09.034.
  • A. Malvandi, F. Hedayati, and D. D. Ganji, “Boundary layer slip flow and heat transfer of nanofluid induced by a permeable stretching sheet with convective boundary condition,” J. Appl. Fluid Mech., vol. 8, no. 1, pp. 151–158, 2015.
  • F. Hedayati, A. Malvandi, M. H. Kaffash, and D. D. Ganji, “Fully developed forced convection of alumina/water nanofluid inside microchannels with asymmetric heating,” Powder Technol., vol. 269, pp. 520–531, 2015. DOI: 10.1016/j.powtec.2014.09.034.
  • M. Sheikholeslami, H. Hatami, and G. Domairry, “Numerical simulation of two phase unsteady nanofluid flow and heat transfer between parallel plates in presence of time dependent magnetic field,” J Taiwan Inst Chem Eng, vol. 46, pp. 43–50, 2015. DOI: 10.1016/j.jtice.2014.09.025.
  • M. Sheikholeslami et al., “Effect of magnetic field on Cu–water nanofluid heat transfer using GMDH-type neural network,” Neural Comput. Appl., vol. 25, no. 1, pp. 171–178, 2014. DOI: 10.1007/s00521-013-1459-y.
  • A. M. J. Al-Zamily, “Effect of magnetic field on natural convection in a nanofluid-filled semi-circular enclosure with heat flux source,” Comput. Fluids, vol. 103, pp. 71–85, 2014. DOI: 10.1016/j.compfluid.2014.07.013.
  • J. Buongiorno, “Convective transport in nanofluids,” J. Heat Transfer, vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • D. Y. Tzou, “Thermal Instability of nanofluids in natural convection,” Int. J. Heat Mass Transf., vol. 51, no. 11–12, pp. 2967–2979, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.09.014.
  • G. S. Agrawal Dhananjay, and R. Bhargava, “Rayleigh-bénard convection in nanofluid,” Int. J. Appl. Mathematics and Mech., vol. 7, pp. 61–76, 2011.
  • D. A. Nield and A. V. Kuznetsov, “The onset of convection in a horizontal nanofluid layer of finite depth,” Eur. J. Mech. B Fluids, vol. 29, no. 3, pp. 217–223, 2010. DOI: 10.1016/j.euromechflu.2010.02.003.
  • D. A. Nield and A. V. Kuznetsov, “Thermal instability in a porous medium layer saturated by a nanofluid,” Int. J. Heat Mass Transf., vol. 52, no. 25–26, pp. 5796–5801, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.07.023.
  • D. Yadav, G. S. Agrawal, and R. Bhargava, “The onset of convection in a binary nanofluid saturated porous layer,” Int. J. Theor. Appl. Multiscale Mech., vol. 2, pp. 198–224, 2012. DOI: 10.1504/IJTAMM.2012.049931.
  • D. Yadav, G. S. Agrawal, and R. Bhargava, “The onset of double diffusive nanofluid convection in a layer of a saturated porous medium with thermal conductivity and viscosity variation,” J. Porous Media, vol. 16, pp. 105–121, 2013. DOI: 10.1615/JPorMedia.v16.i2.30.
  • D. Yadav and M. C. Kim, “The onset of transient soret-driven buoyancy convection in nanoparticle suspensions with particle-concentration-dependent viscosity in a porous medium,” J. Porous Media, vol. 18, no. 8, pp. 369–378, 2015. DOI: 10.1615/JPorMedia.v18.i4.10.
  • R. Chand, G. C. Rana, and A. K. Hussien, “On the onset of thermal instability in a low prandtl number nanofluid layer in a porous medium,” J. Appl. Fluid Mech., vol. 8, no. 2, pp. 265–272, 2015. DOI: 10.18869/acadpub.jafm.67.221.22830.
  • D. Yadav, G. S. Agrawal, and R. Bhargava, “Thermal instability of rotating nanofluid layer,” Int. J. Eng. Sci., vol. 49, pp. 1171–1184, 2011. DOI: 10.1016/j.ijengsci.2011.07.002.
  • D. Yadav, R. Bhargava, and G. S. Agrawal, “Numerical solution of a thermal instability problem in a rotating nanofluid layer,” Int. J. Heat Mass Transf., vol. 63, pp. 313–322, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.04.003.
  • D. Yadav and M. C. Kim, “The effect of rotation on the onset of transient soret-driven buoyancy convection in a porous layer saturated by a nanofluid,” Microfluid. Nanofluid., vol. 17, no. 6, pp. 1085–1093, 2014. DOI: 10.1007/s10404-014-1387-x.
  • R. Chand, G. C. Rana, and S. K. Kango, “Effect of variable gravity on thermal instability of rotating nanofluid in porous medium,” FME Trans., vol. 43, pp. 62–69, 2015. DOI: 10.5937/fmet1501062c.
  • R. Chand and G. C. Rana, “On the onset of thermal convection in rotating nanofluid layer saturating a Darcy–Brinkman porous medium,” Int. J. Heat Mass Transfer, vol. 55, pp. 5417–5424, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.04.043.
  • R. Chand, D. Yadav, and G. C. Rana, “Electro thermo convection in a horizontal layer of rotating nanofluid,” Int. J. Nanoparticles, vol. 8, no. 3–4, pp. 241–261, 2015. DOI: 10.1504/IJNP.2015.073726.
  • D. Yadav, R. Bhargava, and G. S. Agrawal, “Thermal instability in a nanofluid layer with vertical magnetic field,” J. Eng. Mathematics, vol. 80, no. 1, pp. 147–164, 2013. DOI: 10.1007/s10665-012-9598-1.
  • D. Yadav et al., “Magneto-convection in a rotating layer of nanofluid,” Asia-Pac. J. Chem. Eng., vol. 9, no. 5, pp. 663–677, 2014. DOI: 10.1002/apj.1796.
  • D. Yadav, D. Nam, and J. Lee, “The onset of transient Soret-driven MHD convection confined within a Hele-Shaw cell with nanoparticles suspension,” J. Taiwan Inst. Chem. Eng., vol. 58, pp. 235–244, 2016. DOI: 10.1016/j.jtice.2015.07.008.
  • U. Gupta, J. Ahuja, and R. K. Wanchoo, “Magnetoconvection in a nanofluid layer,” Int. J. Heat Mass Transf., vol. 64, pp. 1163–1171, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.05.035.
  • A. Malvandi, S. A. Moshizi, and D. D. Ganji, “Two-component heterogeneous mixed convection of alumina/water nanofluid in microchannels with heat source/sink,” Adv. Powder Technol., vol. 27, pp. 245–254, 2016. DOI: 10.1016/j.apt.2015.12.009.
  • A. Malvandi and D. D. Ganji, “Fully developed flow and heat transfer of nanofluids inside a vertical annulus,” J Braz. Soc. Mech. Sci. Eng., vol. 37, no. 1, pp. 141–147, 2015. DOI: 10.1007/s40430-014-0139-x.
  • H. A. Mohammed, P. Gunnasegaran, and N. H. Shuaib, “Heat transfer in rectangular microchannels heat sink using nanofluids,” Int. Commun. Heat Mass Transfer, vol. 37, no. 10, pp. 1496–1503, 2010. DOI: 10.1016/j.icheatmasstransfer.2010.08.020.
  • R. Chand and G. C. Rana, “Oscillating convection of nanofluid in porous medium,” Transp. Porous Media, vol. 95, no. 2, pp. 269–284, 2012. DOI: 10.1007/s11242-012-0042-9.
  • J. C. Umavathi and M. A. Sheremet, “Influence of temperature dependent conductivity of a nanofluid in a vertical rectangular duct,” Int. J. Non Linear Mech., vol. 78, pp. 17–28, 2016. DOI: 10.1016/j.ijnonlinmec.2015.09.018.
  • C. T. Nguyen, G. Roy, C. Gauthier, and N. Galanis, “Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system,” Appl. Therm. Eng., vol. 27, no. 8–9, pp. 1501–1506, 2007. DOI: 10.1016/j.applthermaleng.2006.09.028.
  • M. Mahdavi, M. Sharifpur, and J. P. Meyer, “CFD modelling of heat transfer and pressure drops for nanofluids through vertical tubes in laminar flow by lagrangian and eulerian approaches,” Int. J. Heat Mass Transfer, vol. 88, pp. 803–813, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.04.112.
  • M. Bouhalleb and H. Abbassi, “Numerical investigation of heat transfer by CuO–water nanofluid in rectangular enclosures,” Heat Transfer Eng., vol. 37, no. 1, pp. 13–23, 2016. DOI: 10.1080/01457632.2015.1025003.
  • M. Ali, O. Zeitoun, S. Almotairi, and H. Al-Ansary, “The effect of alumina–water nanofluid on natural convection heat transfer inside vertical circular enclosures heated from above,” Heat Transfer Eng., vol. 34, no. 15, pp. 1289–1299, 2013. DOI: 10.1080/01457632.2013.793115.
  • J. C. Umavathi, “Rayleigh–benard convection subject to time dependent wall temperature in a porous medium layer saturated by a nanofluid,” Meccanica, vol. 50, no. 4, pp. 981–994, 2015. DOI: 10.1007/s11012-014-0076-x.
  • H. Chang et al., “Rheology of CuO nanoparticle suspension prepared by ASNSS,” Rev Adv Master Sci, vol. 10, pp. 128–132, 2005.
  • Y. Ding, H. Alias, D. Wen, and R. A. Williams, “Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids),” Int J Heat Mass Transf, vol. 49, pp. 240–250, 2006. DOI: 10.1016/j.ijheatmasstransfer.2005.07.009.
  • R. M. Mostafizur, A. R. B. Aziz, R. Saidur, M. H. U. Bhuiyan, and I. M. Mahbubul, “Effect of temperature and volume fraction on rheology of methanol based nanofluids,” Int. J. Heat Mass Transfer, vol. 77, pp. 765–769, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.05.055.
  • M. Hojjat, S. G. Etemad, R. Bagheri, and J. Thibault, “Rheological characteristics of non-newtonian nanofluids: Experimental investigation,” Int. Commun. Heat Mass Transfer, vol. 38, no. 2, pp. 144–148, 2011. DOI: 10.1016/j.icheatmasstransfer.2010.11.019.
  • L. J. Sheu, “Thermal instability in a porous medium layer saturated with a viscoelastic nanofluid,” Transp Porous Media, vol. 88, no. 3, pp. 461–477, 2011. DOI: 10.1007/s11242-011-9749-2.
  • D. Yadav et al., “Thermal instability in a rotating porous layer saturated by a non-Newtonian nanofluid with thermal conductivity and viscosity variation,” Microfluid Nanofluid, vol. 16, no. 1–2, pp. 425–440, 2014. DOI: 10.1007/s10404-013-1234-5.
  • I. S. Shivakumara, M. Dhananjaya, and C-O. Ng, “Thermal convective instability in an Oldroyd-B nanofluid saturated porous layer,” Int. J. Heat Mass Transfer, vol. 84, pp. 167–177, 2015. DOI:10.1016/j.ijheatmasstransfer.2015.01.010.
  • D. Yadav, R. Bhargava, and G. S. Agrawal, “Boundary and internal heat source effects on the onset of darcy–brinkman convection in a porous layer saturated by nanofluid,” Int. J. Therm. Sciences, vol. 60, pp. 244–254, 2012. DOI: 10.1016/j.ijthermalsci.2012.05.011.
  • D. Yadav, J. Lee, and H. H. Cho, “Brinkman convection induced by purely internal heating in a rotating porous medium layer saturated by a nanofluid,” Powder Technol., vol. 286, pp. 592–601, 2015. DOI: 10.1016/j.powtec.2015.08.048.
  • D. Yadav, C. D. Kim, J. Lee, and H. H. Cho, “Influence of magnetic field on the onset of nanofluid convection induced by purely internal heating,” Computers & Fluids, vol. 121, pp. 26–36, 2015. DOI: 10.1016/j.compfluid.2015.07.024.
  • D. A. Nield and A. V. Kuznetsov, “The onset of convection in an internally heated nanofluid layer,” ASME J. Heat Transfer, vol. 136, no. 1, pp. 014501–014505, 2013. DOI: 10.1115/1.4025048.
  • D. Yadav, J. Wang, R. Bhargava, J. Lee, and H. H. Cho, “Numerical investigation of the effect of magnetic field on the onset of nanofluid convection,” Appl. Therm. Eng., vol. 103, pp. 1441–1449, 2016. DOI: 10.1016/j.applthermaleng.2016.05.039.
  • D. A. Nield and A. V. Kuznetsov, “Thermal instability in a porous medium layer saturated by a nanofluid: A revised model,” Int. J. Heat Mass Transf., vol. 68, pp. 211–214, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.09.026.
  • D. Yadav, G. S. Agrawal, and J. Lee, “Thermal instability in a rotating nanofluid layer: A revised model,” Ain Shams Eng. J., vol. 7, no. 1, pp. 431–440, 2016. DOI: 10.1016/j.asej.2015.05.005.
  • D. Yadav, D. Lee, H. H. Cho, and J. Lee, “The onset of double-diffusive nanofluid convection in a rotating porous medium layer with thermal conductivity and viscosity variation: A revised model,” Journal of Porous Media, vol. 19, no. 1, pp. 31–46, 2016. DOI: 10.1615/JPorMedia.v19.i1.30.
  • D. Yadav and J. Lee, “Onset of convection in a nanofluid layer confined within a Hele-Shaw cell,” J. App. Fluid Mech., vol. 9, no. 2, pp. 519–527, 2016.
  • D. Yadav and J. Lee, “The onset of MHD nanofluid convection with hall current effect,” Eur. Phys. J. Plus, vol. 130, pp. 162–184, 2015.
  • D. Yadav, J. Lee, and H. H. Cho, “Electrothermal instability in a porous medium layer saturated by a dielectric nanofluid,” J. Appl. Fluid Mech., vol. 9, no. 5, pp. 2123–2132, 2016.
  • B. S. Bhadauria, “Double-diffusive convection in a saturated anisotropic porous layer with internal heat source,” Transp. Porous Med., vol. 92, no. 2, pp. 299–320, 2012.
  • P. G. Siddheshwar, C. Kanchana, Y. Kakimoto, and A. Nakayama, “Steady finite-amplitude Rayleigh–Bénard convection in nanoliquids using a two-phase model: Theoretical answer to the phenomenon of enhanced heat transfer,” J. Heat Transfer, vol. 139, no. 1, pp. 012402–012407, 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.